A Weak form of Hadwiger's Conjecture
DOI:
https://doi.org/10.6000/1927-5129.2014.10.23Keywords:
Graph theory, graph colouring, graph minors, Hadwiger's conjectureAbstract
We introduce the following weak version of Hadwiger's conjecture: If G is a graph and is a cardinal such that there is no coloring map c:G, then K is a minor of G. We prove that this statement is true for graphs with infinite chromatic number.
References
Robertson N, Paul SD, Thomas R, Excluding subdivisions of infinite cliques. Trans Am Math Soc 1992; 332(1): 211-23.
Hugo Hadwiger, ber eine Klassifikation der Streckenkomplexe. Vierteljschr Naturforsch Ges Zrich 1943; 88: 133-43.
Dominic van der Zypen, Hadwiger's conjecture for graphs with infinite chromatic number. Advancement and Development in Mathematical Sciences 2013; 4(1&2): 1-4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Journal of Basic & Applied Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.