Synthesis and Characterization of Zinc Oxide Nanoparticles for Antibacterial Applications


 Nanoparticles, Chemical synthesis, Zinc oxide, Optical property, Antibacterial activity.

How to Cite

S. Naseem Shah, S. Imran Ali, S. Rizwan Ali, M. Naeem, Yasmeen Bibi, S. Rehan Ali, S. Masood Raza, Yousuf Khan, & Sikander Khan Sherwani. (2016). Synthesis and Characterization of Zinc Oxide Nanoparticles for Antibacterial Applications. Journal of Basic & Applied Sciences, 12, 205–210.


ZnO nanoparticles are synthesized for antibacterial applications by a simple co-precipitation method. X-ray diffraction (XRD) reveals that the synthesized ZnO has hexagonal crystal structure with mean crystallite size of 29 nm. Scanning electron microscopy (SEM) and Energy dispersive x-ray spectroscopy (EDX) shows pure ZnO with uniform morphology. UV–VIS absorption spectroscopy yield an absorption edge in the range 300-400 nm which corresponds to a band gap energy of 3.50 eV. Antibacterial activity of ZnO nanoparticles is tested against gram positive and gram negative bacteria by using agar-well method. These ZnO nanoparticles are found to be strongly antimicrobial as they effectively prevent the growth of many test microorganisms with a small minimum inhibitory concentrations (MIC) ~ 80 – 280 µg/ml.


Applerot G, Lellouche J, Perkas N, Nitzan Y, Gedanken A, Banin E. ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv 2012; 2: 2314-2321.

Yu SF, Yuen C, Lau SP, Park WI, Yi GC. Random laser action in ZnO nanorod arrays embedded in ZnO epilayers. Appl Phys Lett 2004; 84: 3241-3243.

Peter KS, Rosalyn LK, George LM, Kenneth JK. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002; 18: 6679-6686.

Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotechnol. Biol Med 2011; 7: 184-192.

Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 2011; 77: 2325-2331.

Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 2008; 24: 4140-4144.

Sawai J, Yoshikawa T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. Journal of Applied Microbiology 2004; 96: 803-809.

Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P. Room-temperature ultraviolet nanowire nanolasers. Science 2001; 292(5523): 1897-1899.

Seema R, Poonam S, Shishodia, Mehra RM. Synthesis of nanocrystalline ZnO powder via sol-gel route for dye-sensitized solar cells. Solar Energy Materials & Solar Cells 2008; 92: 1639-1645.

Svetozar M, Ankica S, Stanko P. Formation of nanosize ZnO particles by thermal decomposition of zinc acetylacetonate monohydrate. Ceramics International 2010; 36(3): 1117-1123.

Agrell J, Germani G, Jaras SG, Boutonnet M. Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique. Appl Catal A 2003; 242: 233-245.

Singh S, Chakrabarti P. Comparison of the structural and optical properties of ZnO thin films deposited by three different methods for optoelectronic applications, Superlattices Microstruct 2013; 64: 283-293.

Noboru I, Ozaki Y, Kashu S, James M. Superfine particle technology. New York: Springer Verlag; 1992. Available from:

Kumar S, Asokan K, Kumar SR, Chatterjee S, Kanjilal D, Kumar GA. Investigations on structural and optical properties of ZnO and ZnO:Co nanoparticles under dense electronic excitations. RSC Adv 2014; 4: 62123-62131.

Jian MZ, Yan Z, Ke-Wei X, Vincent J. General compliance transformation relation and applications for anisotropic hexagonal metals. Solid State Communications 2006; 139: 87-91.

Tamµs U. The Meaning of Size Obtained from Broadened X-ray Diffraction Peaks. Advanced Engineering Materials 2003; 5: 323-329.

Powder Diffraction File, Alphabetical Index, Inorganic Compounds, Published by JCPDS International Centre for Diffraction Data, Newtown Square, PA. 19073, 2003 (JCPDS Card No.: 36-1451).

Chou TP, Qifeng Z, Glen EF, Guozhong C. Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency. Adv Mater 2007; 19: 2588-2592.

Caglara M, Yakuphanoglub F. Structural and optical properties of copper doped ZnO films derived by sol-gel. Applied Surface Science 2012; 258: 3039-3044.

Rana SB, Singh P, Sharma AK, Carbonari AW, Dogra R. Synthesis and characterization of pure and doped ZnO nanoparticles. Journal of Optoelectronics and Advanced Materials 2010; 12: 257-261. 2010/16402.pdf

Van Dijken A, Makkinje J, Meijerink A. The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles. Journal of Luminescence. 2001; 92(4): 323-328.

Naeem M, Qaseem S, Gul I, Maqsood A. Study of active surface defects in Ti doped ZnO nanoparticles. J Appl Phys 2010; 107: 124303.

Wang JF, Wen BS, Hong C, Wen XW, Guo Z. (Pr, Co, Nb)-Doped SnO2 Varistor. J Am Ceram Soc 2005; 88: 331-334.

Viswanatha R, Sapra S, Satpati B, Satyam PV, Dev BN, Sarma DD. Understanding the quantum size effects in ZnO nanocrystals. Journal of Materials Chemistry 2004; 14:661-668.

Talat M, Yasmeen B, Humera I, Iffat M, Aneela W, Sikandar S. Complexation and Antimicrobial activities of ? sitosterol with trace metals. (Cu (II), Co (II), and Fe (III). European Academic Research 2013; 1: 677-685. Available from:

Perez C, Paul M, Bazerque P. An antibiotic assay by the agar well diffusion method. Acta Biol Med Exp 2009; 15: 113-115.

Julia AK, George EH, Max S, Wendy A, Catherine M, Cynthia C. Use of the National Committee for Clinical Laboratory Standards Guidelines for Disk Diffusion Susceptibility Testing in New York State Laboratories. J Clin Microbiol 2000; 38(9): 3341-3348. Available from: articles/PMC87384/

Olson CR, Balasubramaniam T, Shrum J, Nord T, Taylor PL, Burrell RE. Novel Antimicrobial Activity of Nanocrystalline Silver Dressings. Int. Congress on MEMS 2005; 129-131.

Sougata S, Atish DJ, Samir KS, Golam M. Facile synthesis of silver nano particles with highly efficient anti-microbial property. J Polyhedron 2007; 26: 4419-4426.

Navarro V, Villarreal ML, Rojas G, Lozoya X. Antimicrobial evaluation of some plants used in Mexican traditional medicine for the treatment of infectious diseases. J Ethnopharmacol 1996; 53(3): 143-147.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 S. Naseem Shah, S. Imran Ali, S. Rizwan Ali, M. Naeem, Yasmeen Bibi, S. Rehan Ali, S. Masood Raza, Yousuf Khan , Sikander Khan Sherwani