Enhanced Mechanical Properties of Organo-Clay Based UHMWPE Nanocomposite Films


 UHMWPE, gel or solution casting, modulus, organo-clay, nanocomposite, mechanical properties.

How to Cite

R. Ahmed, & K. Ali Syed. (2016). Enhanced Mechanical Properties of Organo-Clay Based UHMWPE Nanocomposite Films. Journal of Basic & Applied Sciences, 12, 226–230. https://doi.org/10.6000/1927-5129.2016.12.34


The proposed study investigated the effect of organo-clay contents in ultra-high molecular weight polyethylene (UHMWPE) gel/solution cast films. The organo-clay was loaded in the range of 1 to 5 % (wt. / wt.), based on polymer content, to prepare UHMWPE nanocomposite films. The UHMWPE nanocomposite films were drawn up to 15 times below their melting point. Un-drawn and drawn UHMWPE nanocomposite films were subjected to mechanical and optical characterizations. The enhanced modulus (> 170 % higher than un-drawn films for 5 % organo-clay loadings at draw ratio of 15) and higher force at break (about 150 % higher than un-drawn films) without the loss of inherent optical transparency, even at higher organo-clay loadings, are reported. The findings in this study will broaden the engineering applications of UHMWPE nanocomposite films.



Giannelis EP. Polymer Layered Silicate Nanocomposites. Adv Mater 1996; 8: 29. http://dx.doi.org/10.1002/adma.19960080104

Messersmith PB, Giannelis EP. Polymer-layered silicate nanocomposites: in situ intercalative polymerization of epsilon.-caprolactone in layered silicates. Chem Mater 1993; 5: 1064. http://dx.doi.org/10.1021/cm00032a005

Pinnavaia TJ. Intercalated Clay Catalysts. Science 1983; 220: 365. http://dx.doi.org/10.1126/science.220.4595.365

Gilman JW. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 1999; 15: 31. http://dx.doi.org/10.1016/S0169-1317(99)00019-8

Pinnavaia TJ, Beall GW. Polymer-Clay Nanocomposite, Wiley, Chichester 2001.

Smith P, Lemstra PJ, Kalb B, Pennings AJ. Ultrahigh-strength polyethylene filaments by solution spinning and hot drawing. Polym Bull (Berlin) 1979; 1: 733. http://dx.doi.org/10.1007/BF00256272

Lemstra PJ, Kirschbaum R. Speciality products based on commodity polymers. Polymer 1985; 26: 1372. http://dx.doi.org/10.1016/0032-3861(85)90315-5

Smith P, Lemstra PJ. Ultra-high-strength polyethylene filaments by solution spinning/drawing. J Material Sci 1980; 15: 505. http://dx.doi.org/10.1007/BF02396802

Alexandre M, Dubois Ph, Sun T, Garces JM, Jérôme R. Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique: synthesis and mechanical properties. Polymer 2002; 43: 2123. http://dx.doi.org/10.1016/S0032-3861(02)00036-8

Junges F, Beauvalet MS, Leal BC, Casagrande ACA, Mota FF, Mauler RS, Casagrande Jr. OL. UHMWPE-layered silicate nanocomposites by in situ polymerization with tris(pyrazolyl)borate titanium/clay catalyst. J Braz Chem Soc 2009; 20(3): 472. http://dx.doi.org/10.1590/S0103-50532009000300010

Lee EM, Oh YS, Ha S. Ha, Ham MJ, Kim BK. Ultra high molecular weight polyethylene/organoclay hybrid nanocomposites. J Appl Polym Sci 2009; 114: 1529. http://dx.doi.org/10.1002/app.30736

Park HS, Lee JH, Nam J-D. Ultra-drawing of gel films of ultra high molecular weight polyethylene/low molecular weight polymer blends containing BaTiO3 nanoparticles. Macromol Res 2006; 14(4): 430. http://dx.doi.org/10.1007/BF03219106

Shin J, Kim J-C, Chang J-H. Characterizations of ultrahigh molecular weight polyethylene nanocomposite films with organomica. Polym Eng Sci 2011; 679. http://dx.doi.org/10.1002/pen.21870

Zhang W, Hu Z, Zhang Y, Lu C, Deng Y. Gel-spun fibers from magnesium hydroxide nanoparticles and UHMWPE nanocomposite: The physical and flammability properties. Composites: part B 2013; 51: 276. http://dx.doi.org/10.1016/j.compositesb.2013.03.014

Xiong D. Friction and wear properties of UHMWPE composites reinforced with carbon fiber. Mater Lett 2005; 59: 175. http://dx.doi.org/10.1016/j.matlet.2004.09.011

Lemstra PJ, Kirschbaum R, Ohta T, Yasuda H. Developments in Oriented Polymer-2, Elsevier Applied Science Publishers, New York 1987.

Ruan S, Gao P, Yu TX. Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer 2006; 47: 1604. http://dx.doi.org/10.1016/j.polymer.2006.01.020

Park S-J, Li K, Hong S-K. J Ind Eng Chem 2005; 11(4): 561.

Zhang Q, Wang Q, Chen Y. J Appl Polym Sci 2013; 3930.

Zhang Y, Yu J, Zhou C, Chen L, Hu Z. Polym Compos 2010; 684.

Lemstra PJ, van Aerle NAJM, Baastiansen CW. Chain-Extended Polyethylene. Polymer J 1987; 19(1): 85. http://dx.doi.org/10.1295/polymj.19.85

Chen L, Wong SC, Pisharath SJ. Fracture properties of nanoclay-filled polypropylene. J Appl Polym Sci 2003; 88: 3298. http://dx.doi.org/10.1002/app.12153

Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O. Mechanical properties of nylon 6-clay hybrid. J Mater Res 1993; 8: 1185. http://dx.doi.org/10.1557/JMR.1993.1185

Kim JC, Chang JH. Macromol Res 2007; 15: 457.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 R. Ahmed , K. Ali Syed