Assessment of Weibull Parameter by Five Numerical Methods and Estimation of Wind Speed at Rotterdam, Netherland


 Wind Energy, Weibull Distribution, Numerical Methods, Rotterdam

How to Cite

Umair Abbas, & G.S. Akram Ali Shah. (2016). Assessment of Weibull Parameter by Five Numerical Methods and Estimation of Wind Speed at Rotterdam, Netherland. Journal of Basic & Applied Sciences, 12, 245–251.


In this paper Weibull parameters(c and k) have been estimated on wind speed data of Rotterdam, Netherland. We have applied five numerical methods i.e. Modified Maximum Likelihood Method, Maximum Likelihood Method, Energy Pattern Method, Empirical Method and Method of Moments, to calculate the values of c and k. The parameters k and c have used to estimate the probability distribution function and average wind speed. The wind speed data on hourly basis from 2005-2014 have obtained from “Royal Netherlands Meteorological Institute”.


Van der Horst D. UK biomass energy since 1990: the mismatch between project types and policy objectives. Energy policy 2005; 33(5): 705-16.

Blumsack S, Richardson K. Cost and emissions implications of coupling wind and solar power. Smart Grid and Renewable Energy 2012; 3(4): 308.

Gipe P. Wind energy comes of age: John Wiley & Sons; 1995.

Khan JK, Ahmed F, Uddin Z, Iqbal ST, Jilani SU, Siddiqui AA, et al. Determination of Weibull Parameter by Four Numerical Methods and Prediction of Wind Speed in Jiwani (Balochistan). Journal of Basic & Applied Sciences 2015; 11: 62.

Breukers S, Wolsink M, editors. Institutional capacity in policy processes for wind energy in the Netherlands. ECPR Conference, Marburg; 2003.

Enzensberger N, Wietschel M, Rentz O. Policy instruments fostering wind energy projects—a multi-perspective evaluation approach. Energy Policy 2002; 30(9): 793-801.

Chang TP. Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Applied Energy 2011; 88(1): 272-82.

Ohunakin O, Adaramola M, Oyewola O. Wind energy evaluation for electricity generation using WECS in seven selected locations in Nigeria. Applied Energy 2011; 88(9): 3197-206.

Ucar A, Balo F. Evaluation of wind energy potential and electricity generation at six locations in Turkey. Applied Energy 2009; 86(10): 1864-72.

Chang TP. Estimation of wind energy potential using different probability density functions. Applied Energy 2011; 88(5): 1848-56.

Kwon S-D. Uncertainty analysis of wind energy potential assessment. Applied Energy 2010; 87(3): 856-65.

Akda? SA, Dinler A. A new method to estimate Weibull parameters for wind energy applications. Energy conversion and management 2009; 50(7): 1761-6.

Fisher RA. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 1915; 10(4): 507-21.

Stevens M, Smulders P. The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes. Wind engineering 1979; 3: 132-45.

Justus C, Hargraves W, Mikhail A, Graber D. Methods for estimating wind speed frequency distributions. Journal of applied meteorology 1978; 17(3): 350-3.<0350:MFEWSF>2.0.CO;2

Justus C, Mikhail A. Height variation of wind speed and wind distributions statistics. Geophysical Research Letters 1976; 3(5): 261-4.

Wolsink M. Dutch wind power policy: stagnating implementation of renewables. Energy policy 1996; 24(12): 1079-88.

Albani A, Ibrahim M. Preliminary development of prototype of Savonius wind turbine for application in low wind speed in Kuala Terengganu, Malaysia. International Journal of Scientific and Technology Research 2013; 2(3): 102-8.

Indhumathy D, Seshaiah C, Sukkiramathi K. Estimation of Weibull Parameters for Wind speed calculation at Kanyakumari in India. International Journal of Innovative Research in Science, Engineering and Technology 2014; 3(1): 8340-5.

Sterl A, Bakker AM, van den Brink HW, Haarsma R, Stepek A, Wijnant IL, et al. Large-scale winds in the southern North Sea region: the wind part of the KNMI’14 climate change scenarios. Environmental Research Letters 2015; 10(3): 035004.

Ahmed S, Mahammed H. A statistical analysis of wind power density based on the Weibull and Ralyeigh models of “Penjwen Region” Sulaimani/Iraq. Jordan J MechInd Eng 2012; 6: 135-40.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Umair Abbas , G.S. Akram Ali Shah