Rydberg Energy Levels and Quantum Defects of some Semiconductor Elements


  • Ejaz Ahmed Hazara University, Mansehra, Pakistan
  • Jehan Akbar Hazara University, Mansehra, Pakistan




Weakest bound Electron Potential Model Theory, Rydberg Atoms, Rydberg energy levels, Boron, Silicon.


Weakest bound Electron Potential Model Theory has turned out to be a successful theory in explaining many atomic properties, namely, energy levels, transition probabilities and oscillator strengths. The theory has also been used to calculate Rydberg energy levels and quantum defects. In this paper we studied semiconductor elements Boron and Silicon. We calculated energy levels of Rydberg atoms of Boron and Silicon up to n = 50 levels using WBEPMT. We also calculated quantum defects in principle quantum number for various configurations of these elements.


Neng-wu Z, Hou-wen X. Successive ionization potentials of 4fn electrons within'WBEPM'theory'. Journal of Physics B: Atomic, Molecular and Optical Physics 1991; 24(6): 1187. https://doi.org/10.1088/0953-4075/24/6/010

Zheng N, Ma D, Yang R, Zhou T, Wang T, Han S. An efficient calculation of the energy levels of the carbon group. The Journal of Chemical Physics 2000; 113(5): 1681-1687. https://doi.org/10.1063/1.481969

Zheng NW, Wang T, Ma DX, Zhou T, Fan J. Weakest bound electron potential model theory. International Journal of Quantum Chemistry 2004; 98(3): 281-290. https://doi.org/10.1002/qua.20021

Ning MA. Ping H, Kangkang Y, Wei G, Xiangbing M, Shuji Z. (1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian 116024; 2. School of Automobile Engineering, Dalian University of Technology, Dalian 116024; 3. Institute of Auto-body and Die Engineering, Jilin University, Changchun 130025; 4. College of Materials Science and Engineering, Jilin University, Changchun 130025; 5. Changchun Vehicle Advanced Forming Technology Co., Ltd, Changchun 130000); Research on Boron Steel. Journal of Mechanical Engineering 2010; 14.

Meyer M, Kramer M, Akinc M. Boron?doped molybdenum silicides. Advanced Materials 1996; 8(1): 85-88. https://doi.org/10.1002/adma.19960080118

LeVan SL, Tran HC. The role of boron in flame-retardant treatments 1990.

Gheeraert E, Koizumi S, Teraji T, Kanda H, Nesladek M. Electronic states of boron and phosphorus in diamond. Physica Status Solidi (a) 1999; 174(1): 39-51. https://doi.org/10.1002/(SICI)1521-396X(199907)174:1<39::AID-PSSA39>3.0.CO;2-E

Jönsson P, Johansson SG, Fischer CF. Accurate Calculation of the Isotope Shift and Hyperfine-structure In the Boron (b-ii) Line At 1362 Angstrom. Astrophysical Journal 1994; 429(1).

Mooney PM, Cheng LJ, Süli M, Gerson JD, Corbett JW. Defect energy levels in boron-doped silicon irradiated with 1-MeV electrons. Physical Review B 1977; 15(8): 3836. https://doi.org/10.1103/PhysRevB.15.3836

Sieck A, Porezag D, Frauenheim T, Pederson MR, Jackson K. Structure and vibrational spectra of low-energy silicon clusters. Physical Review A 1997; 56(6): 4890. https://doi.org/10.1103/PhysRevA.56.4890

Takahashi K, Konagai M. Amorphous silicon solar cells 1986.

Botti S, Flores-Livas JA, Amsler M, Goedecker S, Marques MA. Low-energy silicon allotropes with strong absorption in the visible for photovoltaic applications. Physical Review B 2012; 86(12): 121204. https://doi.org/10.1103/PhysRevB.86.121204

Gallagher TF, Edelstein SA, Hill RM. Collisional angular momentum mixing in Rydberg states of sodium. Physical Review Letters 1975; 35(10): 644. https://doi.org/10.1103/PhysRevLett.35.644

Lewis BR, Baldwin KGH, Heays AN, Gibson ST, Sprengers JP, Ubachs W, Fujitake M. Structure and predissociation of the 3 p ? u D ? 3 u+ Rydberg state of N 2: First extreme-ultraviolet and new near-infrared observations, with coupled-channels analysis. The Journal of Chemical Physics 2008; 129(20): 204303. https://doi.org/10.1063/1.3023034

Antony BK, Gamache PR, Szembek CD, Niles DL, Gamache RR. Modified complex Robert–Bonamy formalism calculations for strong to weak interacting systems. Molecular Physics 2006; 104(16-17): 2791-2799. https://doi.org/10.1080/00268970600868583

Sandhu JS. Photoelectron spectroscopic studies of some polyatomic molecules (Doctoral dissertation, University of British Columbia) 1969.

Mahon?Smith D, Carroll PK. J Chem Phys 1964; 41: 1377. Google ScholarScitation, CAS https://doi.org/10.1063/1.1726076

Ogawa M, Tanaka Y, Jursa AS. Isotope shift of the nitrogen absorption bands in the vacuum ultraviolet region. Canadian Journal of Physics 1964; 42(9): 1716-1729. https://doi.org/10.1139/p64-157

Scherr CW. An SCF LCAO MO Study of N2. The Journal of Chemical Physics 1955; 23(3): 569-578. https://doi.org/10.1063/1.1742031

Richardson JW. Double?? SCF MO Calculation of the Ground and Some Excited States of N2. The Journal of Chemical Physics 1961; 35(5): 1829-1839. https://doi.org/10.1063/1.1732152

Fraga S, Ransil BJ. Studies in Molecular Structure. V. Computed Spectroscopic Constants for Selected Diatomic Molecules of the First Row. The Journal of Chemical Physics 1961; 35(2): 669-678 https://doi.org/10.1063/1.1731987

Lefebvre-Brion H, Moser CM, Nesbet RK. Rydberg levels in carbon monoxide. Journal of Molecular Spectroscopy 1964; 13(1-4): 418-429. https://doi.org/10.1016/0022-2852(64)90089-X

Aymar M, Champeau RJ, Delsart C, Keller JC. Lifetimes of Rydberg levels in the perturbed 6snd 1, 3D2 series of barium I. Journal of Physics B: Atomic and Molecular Physics 1981; 14(23): 4489. https://doi.org/10.1088/0022-3700/14/23/012

Cromwell EF, Liu DJ, Vrakking MJJ, Kung AH, Lee YT. Dynamics of H2 elimination from cyclohexadiene. The Journal of Chemical Physics 1991; 95(1): 297-307. https://doi.org/10.1063/1.461487

Drachman RJ, Bhatia AK. Rydberg levels of lithium. Physical Review A 1995; 51(4): 2926. https://doi.org/10.1103/PhysRevA.51.2926

Odintzova GA, Striganov AR. The spectrum and energy levels of the neutral atom of boron (Bi). Journal of Physical and Chemical Reference Data 1979; 8(1): 63-68. https://doi.org/10.1063/1.555592




How to Cite

Ejaz Ahmed, & Jehan Akbar. (2018). Rydberg Energy Levels and Quantum Defects of some Semiconductor Elements. Journal of Basic & Applied Sciences, 14, 113–118. https://doi.org/10.6000/1927-5129.2018.14.16