Solving the Periodic Toda-Type Chain with a Self-Consistent Source

Authors

  • Bazar Babajanov Urgench State University, Urgench, 220100, Uzbekistan
  • Azizbek Azamatov Urgench State University, Urgench, 220100, Uzbekistan
  • Alisher Babajonov Urgench State University, Urgench, 220100, Uzbekistan

DOI:

https://doi.org/10.29169/1927-5129.2020.16.06

Keywords:

Toda chain, discrete Hill Equation, self-consistent source, inverse spectral problem, trace formulas, soliton equations.

Abstract

In this article, we explore the periodic Toda-type chain. The aim of this work is to obtain representations for the solutions of the periodic Toda-type chain with self-consistent source within the framework of the inverse spectral method for the discrete Hill equation. An efficient method for integrating the periodic Toda-type chain with self-consistent source is presented. The results can be used in modeling special types of electric transmission lines.

References

Toda M. Waves in nonlinear lattice. Progr Theoret Phys Suppl 1970; 45: 74-200. https://doi.org/10.1143/PTPS.45.174 DOI: https://doi.org/10.1143/PTPS.45.174

Flashka H. On the Toda lattice. II Progr Theoret Phys 1974; 51: 703-716. https://doi.org/10.1143/PTP.51.703 DOI: https://doi.org/10.1143/PTP.51.703

Muto V, Scott AC, Christiansen PL. Thermally generated solitons in a Toda lattice model of DNA. Physics Letters A 1989; 136: 33-36. https://doi.org/10.1016/0375-9601(89)90671-3 DOI: https://doi.org/10.1016/0375-9601(89)90671-3

Lou SY, Tang XY. Method of Nonlinear Mathematical Physics. Beijing: Science Press 2006; 116-120.

Manakov SV. Complete integrability and stochastization of discrete dynamical systems. Zh. Eksper Teoret Fiz 1974; 67: 543-555.

Liu X, Zeng Y. On the Toda lattice equation with self-consistent sources. J Phys A: Math Gen 2005; 38: 8951-65. https://doi.org/10.1088/0305-4470/38/41/008

Manakov S.V. On complete integrability and stochastization in discrete dynamical systems. - Zhurn Exp and Theor Physics 1974; 67(2): 543-555.

Date E, Tanaka S. Analog of inverse scattering theory for discrete Hill`s equation and exact solutions for the periodic Toda lattice.-Progress Theor. Physics 1976; 55(2): 217-222. https://doi.org/10.1143/PTP.55.457

Teschl G. Jacobi Operators and Completely Integrable Lattices, Mathematical Surveys and Monographs, AMS 2000; vol. 72. https://doi.org/10.1090/surv/072 DOI: https://doi.org/10.1090/surv/072

Babazhanov BA. On one method of integration of the periodic Toda chain. UzMZh 2015; 2: 16-24.

Melnikov VK. A direct method for deriving a multisoliton solution for the problem of interaction of waves on the x,y plane. Commun Math Phys 1987; 112: 639-52. https://doi.org/10.1007/BF01225378 DOI: https://doi.org/10.1007/BF01225378

Melnikov VK. Integration method of the Korteweg-de Vries equation with a self-consistent source. Phys Lett A 1988; 133: 493-6. https://doi.org/10.1016/0375-9601(88)90522-1 DOI: https://doi.org/10.1016/0375-9601(88)90522-1

Melnikov VK. Integration of the nonlinear Schroedinger equation with a self-consistent source. Commun Math Phys 1991; 137: 359-81. https://doi.org/10.1007/BF02431884 DOI: https://doi.org/10.1007/BF02431884

Melnikov VK. Integration of the Korteweg-de Vries equation with a source. Inverse Problems 1990; 6: 233-46. https://doi.org/10.1088/0266-5611/6/2/007 DOI: https://doi.org/10.1088/0266-5611/6/2/007

Leon J, Latifi A. Solution of an initial-boundary value problem for coupled nonlinear waves. J Phys A: Math Gen 1990; 23: 1385-1403. https://doi.org/10.1088/0305-4470/23/8/013 DOI: https://doi.org/10.1088/0305-4470/23/8/013

Claude C, Latifi A, Leon J. Nonlinear resonant scattering and plasma instability: an integrable model. J Math Phys 1991; 32: 3321-3330. https://doi.org/10.1063/1.529443 DOI: https://doi.org/10.1063/1.529443

Urazboev GU. Toda lattice with a special self-consistent source. Theor Math Phys 2008; 154: 305-315. https://doi.org/10.1007/s11232-008-0025-8 DOI: https://doi.org/10.1007/s11232-008-0025-8

Cabada A, Urazboev GU. Integration of the Toda lattice with an integral-type source. Inverse Problems 2010; 26: 085004 (12pp). https://doi.org/10.1088/0266-5611/26/8/085004 DOI: https://doi.org/10.1088/0266-5611/26/8/085004

Lin RL, Zeng YB, Ma WX. Solving the KdV hierarchy with self-consistent sources by inverse scattering method. Physics A 2001; 291: 287-98. https://doi.org/10.1016/S0378-4371(00)00519-7 DOI: https://doi.org/10.1016/S0378-4371(00)00519-7

Zeng YB, Ma WX, Shao YJ. Two binary Darboux transformations for the KdV hierarchy with self-consistent sources. J Math Phys 2001; 42: 2113-28. https://doi.org/10.1063/1.1357826 DOI: https://doi.org/10.1063/1.1357826

Zeng YB, Shao YJ, Ma WX. Integral-type Darboux transformations for the mKdV hierarchy with self-consistent sources. Commun Theor Phys 2002; 38: 641-8. https://doi.org/10.1088/0253-6102/38/6/641 DOI: https://doi.org/10.1088/0253-6102/38/6/641

Zeng YB, Shao YJ, Xue WM. Negaton and positon solutions of the soliton equation with self-consistent sources. J Phys A: Math Gen 2003; 36: 5035-43. https://doi.org/10.1088/0305-4470/36/18/308 DOI: https://doi.org/10.1088/0305-4470/36/18/308

Xiao T, Zeng YB. Generalized Darboux transformations for the KP equation with self-consistent sources. J Phys A: Math Gen 2004; 37: 7143-62. https://doi.org/10.1088/0305-4470/37/28/006 DOI: https://doi.org/10.1088/0305-4470/37/28/006

Matsuno Y. Bilinear Backlund transformation for the KdV equation with a source. J Phys A: Math Gen 1991; 24: 273-7. https://doi.org/10.1088/0305-4470/24/6/005 DOI: https://doi.org/10.1088/0305-4470/24/6/005

Deng SF, Chen DY, Zhang DJ. The multisoliton solutions of the KP equation with self-consistent sources. J Phys Soc Japan 2003; 72: 2184-92. https://doi.org/10.1143/JPSJ.72.2184 DOI: https://doi.org/10.1143/JPSJ.72.2184

Zhang DJ, Chen DY. The N-soliton solutions of the sine-Gordon equation with self-consistent sources. Physics A 2003; 321: 467-81. https://doi.org/10.1016/S0378-4371(02)01742-9 DOI: https://doi.org/10.1016/S0378-4371(02)01742-9

Kac M, van Moerbeke P. A complete solution of the periodic Toda problem. Proc Nat Acad Sci USA 1975; 72: 1627-1629. https://doi.org/10.1073/pnas.72.4.1627 DOI: https://doi.org/10.1073/pnas.72.4.1627

Date E, Tanaka S. Analog of inverse scattering theory for discrete Hill`s equation and exact solutions for the periodic Toda lattice. Progress Theor Physics 1976; 55: 217-222. https://doi.org/10.1143/PTP.55.457 DOI: https://doi.org/10.1143/PTP.55.457

Babajanov BA, Fechkan M, Urazbaev GU. On the periodic Toda Lattice with self-consistent source. Communications in Nonlinear Science and Numerical Simulation 2015; 22: 379-388. https://doi.org/10.1016/j.cnsns.2014.10.013 DOI: https://doi.org/10.1016/j.cnsns.2014.10.013

Babajanov BA, Khasanov AB. Periodic Toda chain with an integral source. Theoret Math Phys 2015; 184: 1114-1128. https://doi.org/10.1007/s11232-015-0321-z DOI: https://doi.org/10.1007/s11232-015-0321-z

Babajanov BA, Fechkan M, Urazbaev GU. On the periodic Toda lattice hierarchy with an integral source. Communications in Nonlinear Science and Numerical Simulation 2017; 52: 110-123. https://doi.org/10.1016/j.cnsns.2017.04.023 DOI: https://doi.org/10.1016/j.cnsns.2017.04.023

Babajanov BA, Khasanov AB. Integration of periodic Toda-type equation. Ufimsky Mathematical Journal 2017; 9: 17-24. https://doi.org/10.13108/2017-9-2-17 DOI: https://doi.org/10.13108/2017-9-2-17

Liu X, Zeng Y. On the Toda lattice equation with self-consistent sources. J Phys A: Math Gen 2005; 38: 8951-65. https://doi.org/10.1088/0305-4470/38/41/008 DOI: https://doi.org/10.1088/0305-4470/38/41/008

Bulla W, Gesztesy F, Holden H, Teschl G. Algebro-Geometric Quasi-Periodic Finite-Gap Solutions of the Toda and Kac-van Moerbeke Hierarchies. Memoirs of the Amer Math Soc 1998; 135-641. https://doi.org/10.1090/memo/0641 DOI: https://doi.org/10.1090/memo/0641

Khasanov AB, Yakhshimuratov AB. On the Korteweg - de Vries equation with a self-consistent source in the class of periodic functions. Theorist and Mate Physics 2010; 164(2): 214-221. https://doi.org/10.1007/s11232-010-0081-8 DOI: https://doi.org/10.1007/s11232-010-0081-8

David C, Niels GJ, Bishop AR, Findikoglu AT, Reago D. A perturbed Toda lattice model for low loss nonlinear transmission lines. Phys D: Nonlinear Phenom 1998; 123: 291-300. https://doi.org/10.1016/S0167-2789(98)00128-6 DOI: https://doi.org/10.1016/S0167-2789(98)00128-6

Garnier J, Abdullaev FKh. Soliton dynamics in a random Toda chain. Phys Rev E 2003; 67: 026609-1. https://doi.org/10.1103/PhysRevE.67.026609 DOI: https://doi.org/10.1103/PhysRevE.67.026609

Hochstadt H. On the theory of Hill's matrices and related inverse spectral problems, Linear Algebra Appl 1975; 11: 41-52. https://doi.org/10.1016/0024-3795(75)90116-0 DOI: https://doi.org/10.1016/0024-3795(75)90116-0

Hurwitz A, Courant R. Vorlesungen uber allgemeine Funktionentheorie und elliptische Funktionen, Springer, Berlin 1964. https://doi.org/10.1007/978-3-662-00750-1 DOI: https://doi.org/10.1007/978-3-662-00750-1

Downloads

Published

2020-01-05

How to Cite

Bazar Babajanov, Azizbek Azamatov, & Alisher Babajonov. (2020). Solving the Periodic Toda-Type Chain with a Self-Consistent Source. Journal of Basic & Applied Sciences, 16, 43–49. https://doi.org/10.29169/1927-5129.2020.16.06

Issue

Section

Mathematics