Micropropagation of the Halophyte Sarcocornia fruticosa (L.) A. J. Scott


Explants, halophyte, in vitro propagation, marine biology, Sarcocornia.

How to Cite

Maria Filomena de Jesus Raposo, & Rui Manuel Santos Costa de Morais. (2021). Micropropagation of the Halophyte Sarcocornia fruticosa (L.) A. J. Scott. Journal of Basic & Applied Sciences, 10, 53–59. https://doi.org/10.6000/1927-5129.2014.10.08


Details of investigation to evaluate the effects of the number of nodes (one, two or three) of Sarcocornia fruticosa explants on growth and multiplication rate of plantlets are presented in this paper. The responses of the 3-node explants to some supplementary sources of different aminoacids and growth regulators indol-3-acetic acid, 6-benzylaminopurine and gibberellins A3 were also analysed. Plantlets from 3-node explants showed a marked increase in growth and number of lateral shoots, indicating that Sarcocornia does not respond well when explants are very small. The addition of 100 mg l-1 casein hydrolysate plus 150 mg l-1 glutamine, and 100 mg l-1 casein hydrolysate plus vitamins showed to be good growth promoters in micropropagating Sarcocornia, giving longer plantlets and higher multiplication rates.



À la découverte des plantes – Plantes recensées: Salicorne

[page in the internet, cited 2009 July]. Available from: http://plantes.sauvages.free.fr/pages_plantes/plante_salicorne.htm

Lauritzen D. Food enrichment with marine omega-3 fatty acids. Int Food Ingred 1994; 1/2: 41-4.

Gordon PT, Ratliff V. The implications of omega-3 fatty acids in human health. In: Flick Jr GJ, Martin RE, editors. Advances in Seafood Biochemistry – Composition and Quality. Lancaster, USA: Technomic Publishing 1992.

Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother2002; 56: 365-79. http://dx.doi.org/10.1016/S0753-3322(02)00253-6

Cuvelier ME. Antioxidants. In: Morais RM, editor. Functional Foods: an introductory course. Porto: Escola Superior de Biotecnologia/UCP 2001; p. 95-105.

Onaindia M, Omezaga I. Natural regeneration in salt marshes of northern Spain. AnnBot Fen 1999; 36: 59-66.

Prehn D, Serrano C. Berrios CG, Arce-Johnson P. Propagation of Quillaja saponaria Mol. starting from seed. Bosque 2003; 24: 3-12.

Ahmad N, Anis M. In vitro mass propagation of Cucumis sativus L from nodal nodes. Turk J Bot 2005; 29: 237-40.

Stefaniak B, Wozny A, Li V. Plant micropropagation and callus induction of some annual Salsola species. Biol Plant 2003; 46: 305-8. http://dx.doi.org/10.1023/A:1022879400747

Mei B, No EG, McWilliams E, Gould JH, Newton RJ. In vitro regeneration of fourwing salt bush Atriplex canescens(Pursh) Nutt. J Ran Manag 1997; 50: 413-8. http://dx.doi.org/10.2307/4003309

Al-Bahany AM, Al-Khayri JM. Micropropagation of grey mangrove Avicennia marina. Plant Cell Tissue Org Cult 2003; 72: 87-93. http://dx.doi.org/10.1023/A:1021205731719

Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM. Salicylic acid prevents the damaging action of stress factors of wheat plants. Bulg J Plant Physiol 2003: 314-9.

Younis ME, El-Shahaby OA, Nemat-Alla MM, El-Bastawisy ZM. Kinetin alleviates the influence of water logging and salinity on growth and affects the production of plant growth regulators in Vigna sinensis and Zea mays. Agronomie 2003; 23: 277-85. http://dx.doi.org/10.1051/agro:2003010

Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Calif Agric Exp Stat 1950; 347: 1-32.

Davy AJ, Bishop GF, Costa CSB. Salicornia L. (Salicornia pusilla J. Woods, S. ramosissima J. Woods, S. europaea L., S. obscura P.W. Ball & Tutin, S. nitens P.W. Ball & Tutin, S. fragilis P.W. Ball & Tutin and S. dolichostachya Moss). J Ecol 2001; 89: 681-707. http://dx.doi.org/10.1046/j.0022-0477.2001.00607.x

Dixon RA. Plant Cell Culture – a practical approach, chp 1. Oxford: IRL Press 1987.

Slater A, Scott NW, Fowler MR. Plant Biotechnology: the genetic manipulation of plants. In: Plant Tissue Culture

[book in the internet]. Oxford University Press; 2003

[cited 2003 April 14]. Available from: http://www.oup.com/uk/booksites/ content/0199254680

Orkwiszewski JAJ, Maksymowych R, Maksymowych AB. Regulatory role of indole-3-acetic acid and gibberellic acid in vegetative development of Xanthiumpennsylvanicum. Am J Bot 1979; 66: 532-7. http://dx.doi.org/10.2307/2442502

Smith DJ, Schwabe WW. Acceleration of early growth of seedlings and rooted cuttings of Quercus robur L. Forestry 1984; 57: 143-57. http://dx.doi.org/10.1093/forestry/57.2.143

Ford Y-Y, Taylor JM, Blake PS, Marks TR. Gibberellin A3 stimulates adventitious rooting of cuttings from cherry (Prunus avium). Plant Growth Reg 2002; 37: 127-33. http://dx.doi.org/10.1023/A:1020584627919

Anand VK, Chibbar RN, Nanda KK. Effect of GA3 and IBA on rooting and on the sprouting of buds on stem cuttings of Ipomoea fistulosa. Plant Cell Physiol 1972; 13: 917-21.

Carvalho MAM, Monteiro WR, Dietrich MC. Histological aspects of root formation in petioles of detached leaves of Pereskia grandifolia (Cactaceae): natural conditions and effects of GA3 and dark. Ann Bot 1989; 63: 505-14.

Kaway Y. Effects of exogenous BAP, GA3 and ABA on endogenous auxin and rooting of grapevine hardwood cuttings. J Jap Soc Hort Sci 1997; 66: 93-8. http://dx.doi.org/10.2503/jjshs.66.93

Igwilo N. Presence of axillary bud and application of plant growth hormones on rooting and tuberization of Yam (Dioscorea sp) vine cuttings. Glob J Agric Sci 2003; 2: 128-30.

Carvalho MA. Alterações histológicas e bioquímicas na formação de raízes em folhas destacadas de Pereskia grandifolia Haw.

[MSc Thesis in the internet). Campinas, Brasil: Unicamp Digital Library; 1983

[cited 2009 Sept 28]: Available from: http://libdigi.unicamp.br

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.