ZIF-Derived CuPt@Ag as Catalyst for Hydrogen Evolution Reaction

Authors

  • Gurbet Yerlikaya Osmaniye Korkut Ata University, Department of Food Technology, Kadirli Faculty of Applied Sciences, 80000, Osmaniye, Turkey
  • Mehmet Burak Koca Cukurova University, Faculty of Art and Sciences, Department of Chemistry, 01250, Sarıcam, Adana, Turkey
  • Birgül Yazıcı Cukurova University, Faculty of Art and Sciences, Department of Chemistry, 01250, Sarıcam, Adana, Turkey
  • Murat Farsak Osmaniye Korkut Ata University, Department of Food Technology, Kadirli Faculty of Applied Sciences, 80000, Osmaniye, Turkey
  • Gülfeza Kardaş Cukurova University, Faculty of Art and Sciences, Department of Chemistry, 01250, Sarıcam, Adana, Turkey

DOI:

https://doi.org/10.29169/1927-5129.2021.17.15

Keywords:

Zeolite Imidazolate Framework, HER, CuPt@Ag, electrolysis, nanocomposite

Abstract

In this study, ZIF-Cu and ZIF-Pt were synthesized from 2-methyl imidazole with Cu and Pt salts in the methanol medium. The synthesized ZIFs were annealed to produce a CuPt nanocatalyst in the tube furnace. The Cu: Pt (3:1) nanocatalyst slurry was deposited on silver deposited carbon rod electrode (CE). The hydrogen evolution reaction (HER) activities for the catalyst were measured in a 1 M KOH solution by using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The morphological structure and composition of CuPt@Ag have been studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX). It was observed that the prepared electrode surface had not only a homogeneous and porous structure but also nano-sized particles distributed on the surface. It has been observed that the current is increased from 5.22 mA cm-2 to 25.80 mA cm-2 under -1.55 V potential at CuPt@Ag electrode. The high current density shows that HER efficiency increases on the prepared catalyst.

References

Birry L LA. Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes. J Appl Electrochem 2004; 34: 735-49. https://doi.org/10.1023/B:JACH.0000031161.26544.6a DOI: https://doi.org/10.1023/B:JACH.0000031161.26544.6a

Crabtree GW, Lewis NS. Solar energy conversion. Physics Today 2007; 60: 37-42. https://doi.org/10.1063/1.2718755 DOI: https://doi.org/10.1063/1.2718755

Rahman G, Chae SY, Joo O-s. Efficient hydrogen evolution performance of phase-pure NiS electrocatalysts grown on fluorine-doped tin oxide-coated glass by facile chemical bath deposition. International Journal of Hydrogen Energy 2018; 43: 13022-31. https://doi.org/10.1016/j.ijhydene.2018.05.049 DOI: https://doi.org/10.1016/j.ijhydene.2018.05.049

Borgschulte A, Schlapbach L, Zuttel A. Hydrogen as a future energy carrier: Wiley-VCH; 2008.

Döner A. Hydrogen evolution on Pd modified CoCuZn and CoMnZn cathodes. International Journal of Hydrogen Energy 2018; 43: 22797-806. https://doi.org/10.1016/j.ijhydene.2018.10.160 DOI: https://doi.org/10.1016/j.ijhydene.2018.10.160

Farsak M, Telli E, Ongun Yüce A, Kardaş G. The noble metal loading binary iron–zinc electrode for hydrogen production. International Journal of Hydrogen Energy 2017; 42: 6455-61. https://doi.org/10.1016/j.ijhydene.2016.11.078

Şahin EA, Doğru Mert B, Döşlü ST, Kardaş G, Yazıcı B. Investigation of the hydrogen evolution on Ni deposited titanium oxide nano tubes. International Journal of Hydrogen Energy 2012; 37: 11625-31. https://doi.org/10.1016/j.ijhydene.2012.05.059 DOI: https://doi.org/10.1016/j.ijhydene.2012.05.059

Solmaz R. Electrochemical preparation and characterization of C/Ni–NiIr composite electrodes as novel cathode materials for alkalinene water electrolysis. International Journal of Hydrogen Energy 2013; 38: 2251-6. https://doi.org/10.1016/j.ijhydene.2012.11.101 DOI: https://doi.org/10.1016/j.ijhydene.2012.11.101

Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group: World Scientific; 2011. p. 265-70. https://doi.org/10.1142/9789814317665_0038 DOI: https://doi.org/10.1142/9789814317665_0038

Barbir F. Transition to renewable energy systems with hydrogen as an energy carrier☆. Energy 2009; 34: 308-12. https://doi.org/10.1016/j.energy.2008.07.007 DOI: https://doi.org/10.1016/j.energy.2008.07.007

He S, He S, Gao F, Bo X, Wang Q, Chen X, et al. Ni2P@carbon core-shell nanorod array derived from ZIF-67-Ni: Effect of phosphorization temperature on morphology, structure and hydrogen evolution reaction performance. Applied Surface Science 2018; 457: 933-41. https://doi.org/10.1016/j.apsusc.2018.07.033 DOI: https://doi.org/10.1016/j.apsusc.2018.07.033

Vázquez-Gómez L, Cattarin S, Guerriero P, Musiani M. Hydrogen evolution on porous Ni cathodes modified by spontaneous deposition of Ru or Ir. Electrochimica Acta 2008; 53: 8310-8. https://doi.org/10.1016/j.electacta.2008.06.056 DOI: https://doi.org/10.1016/j.electacta.2008.06.056

Kimmel YC, Esposito DV, Birkmire RW, Chen JG. Effect of surface carbon on the hydrogen evolution reactivity of tungsten carbide (WC) and Pt-modified WC electrocatalysts. International Journal of Hydrogen Energy 2012; 37: 3019-24. https://doi.org/10.1016/j.ijhydene.2011.11.079 DOI: https://doi.org/10.1016/j.ijhydene.2011.11.079

Brewer L. History of the application of the generalized lewis acid base theory to metals. J Nucl Mater 1989; 167: 3-6. https://doi.org/10.1016/0022-3115(89)90418-2 DOI: https://doi.org/10.1016/0022-3115(89)90418-2

Jaksic MM. Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory. Int J Hydrogen Energy 1987; 12: 727-52. https://doi.org/10.1016/0360-3199(87)90090-5 DOI: https://doi.org/10.1016/0360-3199(87)90090-5

Jaksic MM. Interionic nature of synergism in catalysis and electrocatalysis. Solid State Ionics 2000; 136-137: 733-46. https://doi.org/10.1016/S0167-2738(00)00498-7 DOI: https://doi.org/10.1016/S0167-2738(00)00498-7

Jaksic MM. Hypoehyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions. Int J Hydrogen Energy 2001; 26: 559-78. https://doi.org/10.1016/S0360-3199(00)00120-8 DOI: https://doi.org/10.1016/S0360-3199(00)00120-8

Telli E, Solmaz R, Kardaş G. Electrocatalytic oxidation of methanol on Pt/NiZn electrode in alkalinene medium. Russian Journal of Electrochemistry 2011; 47: 811-8. https://doi.org/10.1134/S1023193511070135 DOI: https://doi.org/10.1134/S1023193511070135

Barber JH CB. Structural specificity of the kinetics of the hydrogen evolution reaction on the low-index surfaces of Pt single-crystal electrodes in 0.5 M dm-3 NaOH1. J Electroanal Chem 1999; 461: 80-9. https://doi.org/10.1016/S0022-0728(98)00161-2 DOI: https://doi.org/10.1016/S0022-0728(98)00161-2

Kiani A, Hatami S. Fabrication of platinum coated nanoporous gold film electrode: A nanostructured ultra low-platinum loading electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy 2010; 35: 5202-9. https://doi.org/10.1016/j.ijhydene.2010.03.014 DOI: https://doi.org/10.1016/j.ijhydene.2010.03.014

Habibi B, Pournaghiazar M, Razmi H, Abdolmohammadzadeh H. Electrochemical preparation of a novel, effective and low cast catalytic surface for hydrogen evolution reaction. International Journal of Hydrogen Energy 2008; 33: 2668-78. https://doi.org/10.1016/j.ijhydene.2008.03.014 DOI: https://doi.org/10.1016/j.ijhydene.2008.03.014

Paunović P, Radev I, Dimitrov AT, Popovski O, Lefterova E, Slavcheva E, et al. New nano-structured and interactive supported composite electrocatalysts for hydrogen evolution with partially replaced platinum loading. International Journal of Hydrogen Energy 2009; 34: 2866-73. https://doi.org/10.1016/j.ijhydene.2009.01.024 DOI: https://doi.org/10.1016/j.ijhydene.2009.01.024

Yadav JB, Park J-W, Jung K-D, Joo O-S. Low Pt loading, wide area electrospray deposition technique for highly efficient hydrogen evolving electrode in photoelectrochemical cell. International Journal of Hydrogen Energy 2010; 35: 6541-8. https://doi.org/10.1016/j.ijhydene.2010.02.028 DOI: https://doi.org/10.1016/j.ijhydene.2010.02.028

Solmaz R. Electrochemical Preparation, Characterization, and Application of a Novel Cathode Material, Mild Steel/Ni/NiZn-Pt, for Alkalinene Water Electrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2014; 36: 1212-8. https://doi.org/10.1080/15567036.2010.545804 DOI: https://doi.org/10.1080/15567036.2010.545804

Solmaz R, Döner A, Doğrubaş M, Erdoğan İY, Kardaş G. Enhancement of electrochemical activity of Raney-type NiZn coatings by modifying with PtRu binary deposits: Application for alkalinene water electrolysis. International Journal of Hydrogen Energy 2016; 41: 1432-40. https://doi.org/10.1016/j.ijhydene.2015.11.027 DOI: https://doi.org/10.1016/j.ijhydene.2015.11.027

Solmaz R, Kardaş G. Fabrication and characterization of NiCoZn–M (M: Ag, Pd and Pt) electrocatalysts as cathode materials for electrochemical hydrogen production. International Journal of Hydrogen Energy 2011; 36: 12079-87. https://doi.org/10.1016/j.ijhydene.2011.06.101 DOI: https://doi.org/10.1016/j.ijhydene.2011.06.101

Solmaz R, Salcı A, Yüksel H, Doğrubaş M, Kardaş G. Preparation and characterization of Pd-modified Raney-type NiZn coatings and their application for alkalinene water electrolysis. International Journal of Hydrogen Energy 2017; 42: 2464-75. https://doi.org/10.1016/j.ijhydene.2016.07.221 DOI: https://doi.org/10.1016/j.ijhydene.2016.07.221

Yüksel H, Özbay A, Solmaz R, Kahraman M. Fabrication and characterization of three-dimensional silver nanodomes: Application for alkalinene water electrolysis. International Journal of Hydrogen Energy 2017; 42: 2476-84. https://doi.org/10.1016/j.ijhydene.2016.06.218 DOI: https://doi.org/10.1016/j.ijhydene.2016.06.218

Sun C, Dong Q, Yang J, Dai Z, Lin J, Chen P, et al. Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Research 2016; 9: 2234-43. https://doi.org/10.1007/s12274-016-1110-1 DOI: https://doi.org/10.1007/s12274-016-1110-1

Li H, Qian X, Xu C, Huang S, Zhu C, Jiang X, et al. Hierarchical Porous Co9S8/Nitrogen-Doped Carbon@MoS2 Polyhedrons as pH Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. ACS Appl Mater Interfaces 2017; 9: 28394-405. https://doi.org/10.1021/acsami.7b06384 DOI: https://doi.org/10.1021/acsami.7b06384

Hyeonjin Eom BJ, Donguk Kim and Bongyoung Yoo. Electrodeposition of Silver-Nickel Thin Films with a Galvanostatic Method. Materials Transactions 2010; 51(10): 1842-6. https://doi.org/10.2320/matertrans.M2010126 DOI: https://doi.org/10.2320/matertrans.M2010126

Thanh MT, Thien TV, Du PD, Hung NP, Khieu DQ. Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8. Journal of Porous Materials 2017; 25: 857-69. https://doi.org/10.1007/s10934-017-0498-7 DOI: https://doi.org/10.1007/s10934-017-0498-7

Zhang Y, Jin Z. Synergistic Enhancement of Hydrogen Production by ZIF-67 (Co) Derived Mo–Co–S Modified g-C3N4/rGO Photocatalyst. Catalysis Letters 2018; 149: 34-48. https://doi.org/10.1007/s10562-018-2593-z DOI: https://doi.org/10.1007/s10562-018-2593-z

Chen LL LA. Study of the kinetics of hydrogen evolution reaction on nickel-zinc powder electrodes. J Electrochem Soc 1992; 139: 3214-9. https://doi.org/10.1149/1.2069055 DOI: https://doi.org/10.1149/1.2069055

Orazem ME TB. Electrochemical impedance spectroscopy. John Wiley and Sons; 2008. https://doi.org/10.1002/9780470381588 DOI: https://doi.org/10.1002/9780470381588

Brill TB. Chemistry at Extreme Conditions Edited by M. Riad Manaa (Lawrence Livermore National Laboratory). Elsevier B.V.: Amsterdam 2005. xiv + 522 pp. $193.00. ISBN 0-444-51766-9. Journal of the American Chemical Society 2005; 127: 12431. https://doi.org/10.1021/ja059761y DOI: https://doi.org/10.1021/ja059761y

Rosalbino F, Macciò D, Angelini E, Saccone A, Delfino S. Electrocatalytic properties of Fe–R (R=rare earth metal) crystalline alloys as hydrogen electrodes in alkalinene water electrolysis. Journal of Alloys and Compounds 2005; 403: 275-82. https://doi.org/10.1016/j.jallcom.2005.03.075 DOI: https://doi.org/10.1016/j.jallcom.2005.03.075

Herraiz-Cardona I, Ortega E, Pérez-Herranz V. Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits. Electrochimica Acta 2011; 56: 1308-15. https://doi.org/10.1016/j.electacta.2010.10.093 DOI: https://doi.org/10.1016/j.electacta.2010.10.093

Farsak M, Telli E, Yüce AO, Kardaş G. The noble metal loading binary iron–zinc electrode for hydrogen production. International Journal of Hydrogen Energy 2017; 42(10): 6455-6461. https://doi.org/10.1016/j.ijhydene.2016.11.078 DOI: https://doi.org/10.1016/j.ijhydene.2016.11.078

Aydın Ö. A novel cathode catalyst for hydrogen evolution reaction: Ni–NiO@ Ru. Materials Chemistry and Physics 2021: 124850. https://doi.org/10.1016/j.matchemphys.2021.124850 DOI: https://doi.org/10.1016/j.matchemphys.2021.124850

Wang S, Zou X, Lu Y, Rao S, Xie X, Pang Z, et al. Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkalinene solution. International Journal of Hydrogen Energy 2018; 43: 15673-86. https://doi.org/10.1016/j.ijhydene.2018.06.188 DOI: https://doi.org/10.1016/j.ijhydene.2018.06.188

Downloads

Published

2021-10-28

How to Cite

Yerlikaya, G., Koca, M. B., Yazıcı, B., Farsak, M., & Kardaş, G. (2021). ZIF-Derived CuPt@Ag as Catalyst for Hydrogen Evolution Reaction. Journal of Basic & Applied Sciences, 17, 153–161. https://doi.org/10.29169/1927-5129.2021.17.15

Issue

Section

Petroleum Technology