Quasi-Static Compression and Microstructural Characterization of Polyurethane Foams for Potential Use in Shock Absorbers


  • Noureddine Boumdouha UMR CNRS 5223 Ingénierie des Matériaux Polymères, Université de Lyon, INSA Lyon, 20, Avenue Albert Einstein, 69621 Villeurbanne, France and Laboratoire Dynamique des Systèmes Mécaniques, École Militaire Polytechnique, BP17 Bordj El-Bahri, 16046 Algiers, Algeria
  • Laura Courty UMR CNRS 5223 Ingénierie des Matériaux Polymères, Université de Lyon, INSA Lyon, 20, Avenue Albert Einstein, 69621 Villeurbanne, France
  • Jannick Duchet-Rumeau UMR CNRS 5223 Ingénierie des Matériaux Polymères, Université de Lyon, INSA Lyon, 20, Avenue Albert Einstein, 69621 Villeurbanne, France
  • Jean-François Gerard UMR CNRS 5223 Ingénierie des Matériaux Polymères, Université de Lyon, INSA Lyon, 20, Avenue Albert Einstein, 69621 Villeurbanne, France


Polyurethane foams, quasi-static compression, microstructure characterization, shock absorbers, energy absorption


This study focuses on the detailed characterization of modified polyurethane foams, emphasizing their quasi-static compression behaviour and microstructural properties, to evaluate their potential application in shock-absorbing systems. Through systematic synthesis, we produced various formulations of polyurethane foams. We subjected them to comprehensive quasi-static compression tests to understand their deformation and energy absorption characteristics under controlled loading conditions. Concurrently, microstructural analyses were conducted to elucidate the relationship between the cellular architecture of the foams and their mechanical responses. Although the foams were not directly integrated into shock absorbers, the findings lay a foundational understanding of how their structural and compositional variations influence performance metrics crucial for shock absorption applications. This research contributes to the broader knowledge base required for the future design and optimization of polyurethane foam-based shock absorbers, highlighting critical areas for further investigation and development.


Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cellular Solids: Structure and Properties, Second Edition 1997; 9: 1-510. https://doi.org/10.1017/CBO9781139878326

Warren WE, Kraynik AM. Linear elastic behavior of a low-density Kelvin foam with open cells 1997. https://doi.org/10.1115/1.2788983

Zhu HX, Mills NJ, Knott JF. Analysis of the high strain compression of open-cell foams. J Mech Phys Solids 1997; 45: 1875-904. https://doi.org/10.1016/S0022-5096(97)00027-6

Boumdouha N, Safidine Z, Boudiaf A. Preparation of Nonlethal Projectiles by Polyurethane Foam with the Dynamic and Microscopic Characterization for Risk Assessment and Management. ACS Omega 2022. https://doi.org/10.1021/acsomega.2c01736

Ogden RW. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London A Mathematical and Physical Sciences 1972; 326: 565-84. https://doi.org/10.1098/rspa.1972.0026

Blatz PJ, Ko WL. Application of finite elastic theory to the deformation of rubbery materials. Transactions of the Society of Rheology 1962; 6: 223-52. https://doi.org/10.1122/1.548937

Yeoh H-H, Truong V-D. Quantitative analysis of linamarin in cassava using a cassava β-glucosidase electrode. Food Chem 1993; 47: 295-8. https://doi.org/10.1016/0308-8146(93)90164-B

Boumdouha N, Safidine Z, Boudiaf A, Duchet-Rumeau J, Gerard J-F. Experimental study of the dynamic behaviour of loaded polyurethane foam free fall investigation and evaluation of microstructure. The International Journal of Advanced Manufacturing Technology 2022. https://doi.org/10.1007/s00170-022-08963-1

Brandel B, Lakes RS. Negative Poisson's ratio polyethylene foams. J Mater Sci 2001; 36: 5885-93. https://doi.org/10.1023/A:1012928726952

Colton JS, Suh NP. Nucleation of microcellular foam: Theory and practice. Polym Eng Sci 1987; 27: 500-3. https://doi.org/10.1002/pen.760270704

Holl MR, Kumar V, Garbini JL, Murray WR. Cell nucleation in solid-state polycarbonate-co2 foams: Evidence of a triaxial tensile failure mechanism. American Society of Mechanical Engineers, Materials Division (Publication) MD 1996; 74: 205-6. https://doi.org/10.1115/IMECE1996-1406

Antunes M, Velasco JI. Polymeric foams. vol. 11. ACS Publications 2019. https://doi.org/10.3390/polym11071179

Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge university press 1999.

Boumdouha N, Safidine Z, Boudiaf A. A new study of dynamic mechanical analysis and the microstructure of polyurethanefoams filled. Turk J Chem 2022; 46: 814-34. https://doi.org/10.55730/1300-0527.3371

Kannus P, Parkkari J, Poutala J. Comparison of force attenuation properties of four different hip protectors under simulated falling conditions in the elderly: An in vitro biomechanical study. Bone 1999; 25: 229-35. https://doi.org/10.1016/S8756-3282(99)00154-4

Fleischli JG, Lavery LA, Vela SA, Ashry H, Lavery DC. Comparison of strategies for reducing pressure at the site of neuropathic ulcers. J Am Podiatr Med Assoc 1997; 87: 466-72. https://doi.org/10.7547/87507315-87-10-466

Boumdouha N, Safidine Z, Boudiaf A, Oukara A, Tria DE, Louar A. Mechanical and microstructural characterization of polyurethane foams. 8th Chemistry days JCh8-EMP, Bordj El Bahri, Algeria: Military Polytechnic School (EMP); 2019; p. 169. https://doi.org/10.4000/cybergeo.24732

Boumdouha N, Safidine Z, Boudiaf A. Experimental Study of Loaded Foams During Free Fall Investigation and Evaluation of Microstructure. The International Journal of Advanced Manufacturing Technology 2021. https://doi.org/10.21203/rs.3.rs-792400/v1

N. Boumdouha, A. Boudiaf, Z. Safidine. Mechanical and chemical characterizations of filled polyurethane foams used for non-lethal projectiles. 10 the European Symposium on Non-Lethal Weapons EWG-NLW, Brussels, Belgium: Royal Military Academy 2019; p. 68. https://doi.org/10.4000/cybergeo.24738

Boumdouha N, Safidine Z, Boudiaf A, Oukara A, Tria DE, Louar MA. Manufacture of polyurethane foam with a certain density. The International Conference on Recent Advances in Robotics and Automation ICRARE'18, Monastir - Tunisia: CES International Joint Conferences 2018; pp. 21-30. https://doi.org/10.4000/cybergeo.24737

Noureddine B, Zitouni S, Achraf B, Houssém C, Jannick D-R, Jean-François G. Development and Characterization of Tailored Polyurethane Foams for Shock Absorption. Applied Sciences 2022; 12: 2206. https://doi.org/10.3390/app12042206

Boumdouha N, Duchet-Rumeau J, Gerard J-F, Eddine Tria D, Oukara A. Research on the Dynamic Response Properties of Nonlethal Projectiles for Injury Risk Assessment. ACS Omega 2022. https://doi.org/10.1021/acsomega.2c06265

Quintero MW, Escobar JA, Rey A, Sarmiento A, Rambo CR, Oliveira APN de, et al. Flexible polyurethane foams as templates for cellular glass-ceramics. J Mater Process Technol 2009; 209: 5313-8. https://doi.org/10.1016/j.jmatprotec.2009.03.021

Sonnenschein M, Wendt BL, Schrock AK, Sonney JM, Ryan AJ. The relationship between polyurethane foam microstructure and foam aging. Polymer (Guildf) 2008; 49: 934-42. https://doi.org/10.1016/j.polymer.2008.01.008

Boumdouha N, Louar MA. Influence of Microstructure on the Dynamic Behaviour of Polyurethane Foam with Various Densities. Journal of Basic & Applied Sciences 2023; 19: 131-50. https://doi.org/10.29169/1927-5129.2023.19.12

Zhang J, Zhu Y, Li K, Yuan H, Du J, Qin Q. Dynamic response of sandwich plates with GLARE face-sheets and honeycomb core under metal foam projectile impact: Experimental and numerical investigations. Int J Impact Eng 2022; 164: 104201. https://doi.org/10.1016/j.ijimpeng.2022.104201

Guo H, Yuan H, Zhang J, Ruan D. Review of sandwich structures under impact loadings: experimental, numerical and theoretical analysis. Thin-Walled Structures 2023: 111541. https://doi.org/10.1016/j.tws.2023.111541

Trudeau PA. Analysis and optimization of a new method for creating sandwich composites using polyurethane foam 2010.

Specification S. Standard Specification for Flexible Cellular Materials — Poly(Vinyl Chloride) Foam. Annual Book of ASTM Standards 2005; i: 1-6.

Gibson LJ, Ashby MF. Cellular solids: Structure and properties, second edition. Cellular Solids: Structure and Properties, Second Edition 2014; 9: 1-510. https://doi.org/10.1017/CBO9781139878326

Harte AM, Fleck NA, Ashby MF. The fatigue strength of sandwich beams with an aluminium alloy foam core. Int J Fatigue 2001; 23: 499-507. https://doi.org/10.1016/S0142-1123(01)00012-3

Goussery-Vafiadès. Caractérisations Microstructurale Et Mécanique De Mousses De Nickel À Cellules Ouvertes Pour Batteries De Véhicules Hybrides 2004.

Bezazi A, Scarpa F. Mechanical behaviour of conventional and negative Poisson's ratio thermoplastic polyurethane foams under compressive cyclic loading. Int J Fatigue 2007; 29: 922-30. https://doi.org/10.1016/j.ijfatigue.2006.07.015

Goods SH, Neuschwanger CL, Whinnery LL, Nix WD. Mechanical properties of a particle-strengthened polyurethane foam. J Appl Polym Sci 1999; 74: 2724-36. https://doi.org/10.1002/(SICI)1097-4628(19991209)74:11<2724::AID-APP20>3.0.CO;2-1

Saint-Michel F, Chazeau L, Cavaillé J-Y. Mechanical properties of high density polyurethane foams: II Effect of the filler size. Compos Sci Technol 2006; 66: 2709-18. https://doi.org/10.1016/j.compscitech.2006.03.008

Saha MC, Mahfuz H, Chakravarty UK, Uddin M, Kabir ME, Jeelani S. Effect of density, microstructure, and strain rate on compression behavior of polymeric foams. Materials Science and Engineering A 2005; 406: 328-36. https://doi.org/10.1016/j.msea.2005.07.006

Jin H, Lu WY, Scheffel S, Hinnerichs TD, Neilsen MK. Full-field characterization of mechanical behavior of polyurethane foams. Int J Solids Struct 2007; 44: 6930-44. https://doi.org/10.1016/j.ijsolstr.2007.03.018

van der Schuur M, van der Heide E, Feijen J, Gaymans RJ. Elastic behavior of flexible polyether (urethane-urea) foam materials. Polymer (Guildf) 2004; 45: 2721-7. https://doi.org/10.1016/j.polymer.2004.02.016

Moreland JC, Wilkes GL, Turner RB. Viscoelastic behavior of flexible slabstock polyurethane foams: Dependence on temperature and relative humidity. I. Tensile and compression stress (load) relaxation. J Appl Polym Sci 1994; 52: 549-68. https://doi.org/10.1002/app.1994.070520411

Viot P, Plougonven E, Bernard D. Microtomography on polypropylene foam under dynamic loading: 3D analysis of bead morphology evolution. Compos Part A Appl Sci Manuf 2008; 39: 1266-81. https://doi.org/10.1016/j.compositesa.2007.11.014

Viot P, Beani F. Comportement de mousses polymères en compression dynamique. Revue Des Composites et Des Matériaux Avancés 2003; 13: 283-92. https://doi.org/10.3166/rcma.13.283-292




How to Cite

Boumdouha, N., Courty, L., Duchet-Rumeau, J., & Gerard, J.-F. (2024). Quasi-Static Compression and Microstructural Characterization of Polyurethane Foams for Potential Use in Shock Absorbers. Journal of Basic & Applied Sciences, 20, 23–33. Retrieved from https://setpublisher.com/index.php/jbas/article/view/2504



Polymer and Composite: Special Issue: Research on the Characterizations of Polymers Developed to Reveal the Effect of Microstructure on their Dynamic and Mechanical Acti