Enhancement of Mechanical Properties in Non-Lethal Projectile Holders through High-Density Polyethylene and Alumina Nanocomposites
PDF

Keywords

HDPE nanocomposites
non-lethal projectiles
alumina reinforcement
material characterization
sustainable materials

How to Cite

Boumdouha, N., Duchet-Rumeau, J., & Gerard, J.-F. (2024). Enhancement of Mechanical Properties in Non-Lethal Projectile Holders through High-Density Polyethylene and Alumina Nanocomposites. Journal of Basic & Applied Sciences, 20, 34–47. Retrieved from https://setpublisher.com/index.php/jbas/article/view/2505

Abstract

This research looks into how to make and describe non-lethal projectile supports out of high-density polyethylene (HDPE) nanocomposites that are strengthened with alumina. This innovative approach enhances the material’s mechanical properties and usability in security applications, significantly advancing over traditional materials. By integrating alumina nanoparticles, we improve the composite’s strength and durability, which is critical for the reliability of non-lethal projectiles. Our findings contribute to materials science by providing a sustainable, efficient, and effective alternative for law enforcement and personal safety equipment.

PDF

References

Boumdouha N, Safidine Z, Boudiaf A, Duchet-Rumeau J, Gerard J-F. Experimental study of the dynamic behaviour of loaded polyurethane foam free fall investigation and evaluation of microstructure. Int J Adv Manuf Technol 2022. https://doi.org/10.21203/rs.3.rs-792400/v1

Gurunathan T, Rao CRK, Narayan R, Raju KVSN. Polyurethane conductive blends and composites: Synthesis and applications perspective. J Mater Sci 2013; 48(1): 67-80. https://doi.org/10.1007/s10853-012-6658-x

Szleifer I, Yerushalmi-Rozen R. Polymers and carbon nanotubes - Dimensionality, interactions and nanotechnology. Polymer (Guildf)., SPEC. ISS. 2005; 46(19): 7803-7818. https://doi.org/10.1016/j.polymer.2005.05.104

Svensson A, Hasselström J. Fundamental physical testing of rattle-Design and evaluation of a rattle producing test rig 2017.

Curlee TR, Das S. Plastic wastes: management, control, recycling, and disposal. Noyes Pubns 1991; 201.

Boumdouha N, Safidine Z, Boudiaf A, Oukara A, Tria DE, Louar A. Mechanical and microstructural characterization of polyurethane foams. in 8th Chemistry days JCh8-EMP, Bordj El Bahri, Algeria: Military Polytechnic School (EMP) 2019; p. 169.

Boumdouha N, Safidine Z, Boudiaf A. Experimental Study of Loaded Foams During Free Fall Investigation and Evaluation of Microstructure. Int J Adv Manuf Technol 2021. https://doi.org/10.21203/rs.3.rs-792400/v1

Addiego F. Caractérisation de la variation volumique du polyéthylène au cours de la déformation plastique en traction et en fluage. Institut National Polytechnique de Lorraine 2006.

Baïlon J-P, Dorlot J-M. Des matériaux. Presses inter Polytechnique 2000.

Xu G, Wang Q. Chemically recyclable polymer materials: polymerization and depolymerization cycles. Green Chem 2022; 24(6): 2321-2346. https://doi.org/10.1039/D1GC03901F

Koshti R, Mehta L, Samarth N. Biological Recycling of Polyethylene Terephthalate: A Mini-Review. J Polym Environ 2018; 26(8): 3520-3529. https://doi.org/10.1007/s10924-018-1214-7

Boumdouha N, Louar MA. Influence of Microstructure on the Dynamic Behaviour of Polyurethane Foam with Various Densities. J Basic Appl Sci 2023; 19: 131-150. https://doi.org/10.29169/1927-5129.2023.19.12

Sangale MK. A Review on Biodegradation of Polythene: The Microbial Approach. J Bioremediation Biodegrad 2012; 03(10): 164-172. https://doi.org/10.4172/2155-6199.1000164

Chen J, et al. Surface modification of ion implanted ultra high molecular weight polyethylene. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 2000; 169(1-4): 26-30. https://doi.org/10.1016/S0168-583X(00)00011-2

Bureau MN, Di Francesco E, Denault J, Dickson JI. Mechanical behavior of injection-molded polystyrene/ polyethylene blends: fracture toughness vs. fatigue crack propagation. Polym Eng Sci 1999; 39(6): 1119-1129. https://doi.org/10.1002/pen.11499

Li C, Zhang Y, Zhang Y. Melt grafting of maleic anhydride onto low-density polyethylene/polypropylene blends. Polym Test 2003; 22(2): 191-195. https://doi.org/10.1016/S0142-9418(02)00079-X

Lu B, Chung TC. Synthesis of maleic anhydride grafted polyethylene and polypropylene, with controlled molecular structures. J Polym Sci Part A Polym Chem 2000; 38(8): 1337-1343. https://doi.org/10.1002/(SICI)1099-0518(20000415)38:8<1337::AID-POLA18>3.0.CO;2-8

Gaylord NG, Mehta R. Peroxide‐catalyzed grafting of maleic anhydride onto molten polyethylene in the presence of polar organic compounds. J Polym Sci Part A Polym Chem 1988; 26(4): 1189-1198. https://doi.org/10.1002/pola.1988.080260419

Gaylord NG, Mehta R, Kumar V, Tazi M. High density polyethylene‐g‐maleic anhydride preparation in presence of electron donors. J Appl Polym Sci 1989; 38(2): 359-371. https://doi.org/10.1002/app.1989.070380217

Gaylord NG, Mehta R, Mohan DR, Kumar V. Maleation of linear low‐density polyethylene by reactive processing. J Appl Polym Sci 1992; 44(11): 1941-1949. https://doi.org/10.1002/app.1992.070441109

Rao N, O’Brien K. Mechanical Properties of Solid Polymers. John Wiley & Sons 1998. https://doi.org/10.3139/9783446402447.001

Boumdouha N, Safidine Z, Boudiaf A, Oukara A, Tria DE, Louar MA. Manufacture of polyurethane foam with a certain density. in The International Conference on Recent Advances in Robotics and Automation ICRARE’18, Monastir - Tunisia: CES International Joint Conferences 2018; pp. 21-30.

Linul E, Marşavina L, Vălean C, Bănică R. Static and dynamic mode I fracture toughness of rigid PUR foams under room and cryogenic temperatures. Eng Fract Mech 2020; 225: 106274. https://doi.org/10.1016/j.engfracmech.2018.12.007

Khonakdar HA, Morshedian J, Wagenknecht U, Jafari SH. An investigation of chemical crosslinking effect on properties of high-density polyethylene. Polymer (Guildf) 2003; 44(15): 4301-4309. https://doi.org/10.1016/S0032-3861(03)00363-X

Sultan BA, Palmlof M. Advances in crosslinking technology. Plast. Rubber Compos. Process Appl 1994; 21(2): 65-73.

Boumdouha N, Duchet-Rumeau J, Gerard J-F, Tria DE, Oukara A. Research on the Dynamic Response Properties of Nonlethal Projectiles for Injury Risk Assessment. ACS Omega 2022; 7(50): 47129-47147. https://doi.org/10.1021/acsomega.2c06265

Costa ILM, Zanini NC, Mulinari DR. Thermal and Mechanical Properties of HDPE Reinforced with Al2O3 Nanoparticles Processed by Thermokinectic Mixer. J Inorg Organomet Polym Mater 2021; 31(1): 220-228. https://doi.org/10.1007/s10904-020-01709-0

Boumdouha N, Safidine Z, Boudiaf A. Preparation of Nonlethal Projectiles by Polyurethane Foam with the Dynamic and Microscopic Characterization for Risk Assessment and Management. ACS Omega 7(18): 16211-16221. https://doi.org/10.1021/acsomega.2c01736

Chen G, Hong Zhang X, Liang Qiao J. Effect of nano-fillers on conductivity of polyethylene/low melting point metal alloy composites. Chinese J Polym Sci English Ed. 2015; 33(3): 371-375. https://doi.org/10.1007/s10118-015-1589-z

Chee CY, Song NL, Abdullah LC, Choong TSY, Ibrahim A, Chantara TR. Characterization of mechanical properties: Low-density polyethylene nanocomposite using nanoalumina particle as filler. J Nanomater 2012; 2012. https://doi.org/10.1155/2012/215978

Khan WU, Bahar MK, Mazhar H, Shehzad F, Al-Harthi MA. Recent advances in nitride-filled polyethylene nanocomposites. Adv Compos Hybrid Mater 2023; 6(6): 1-27. https://doi.org/10.1007/s42114-023-00802-5

Ramesh M, Rajeshkumar LN, Srinivasan N, Kumar DV, Balaji D. Influence of filler material on properties of fiber-reinforced polymer composites: A review. E-Polymers 2022; 22(1): 898-916. https://doi.org/10.1515/epoly-2022-0080

Boumdouha N. Project Polytechnique Reporting. Lyon, French 2022.

Cosby T, Aiello A, Durkin DP, Trulove PC. Kinetics of ionic liquid-facilitated cellulose decrystallization by Raman spectral mapping. Cellulose 2021; 28(3): 1321-1330. https://doi.org/10.1007/s10570-020-03643-3

Boumdouha N, Safidine Z, Boudiaf A. A new study of dynamic mechanical analysis and the microstructure of polyurethanefoams filled. Turkish J Chem 2022; 46(3): 814-834. https://doi.org/10.55730/1300-0527.3371

Kravitz LC, Kingsley JD, Elkin EL. Raman and infrared studies of coupled PO4-3 vibrations. J Chem Phys 1968; 49(10): 4571-4575. https://doi.org/10.1063/1.1669918

Snyder RG, Schachtschneider JH. Vibrational analysis of the n-paraffins-I. Assignments of infrared bands in the spectra of C3H8 through n-C19H40. Spectrochim Acta 1963; 19(1): 85-116. https://doi.org/10.1016/0371-1951(63)80095-8

Pezzotti G. Raman spectroscopy of biomedical polyethylenes. Acta Biomater 2017; 55: 28-99. https://doi.org/10.1016/j.actbio.2017.03.015

Ishii K, Nukaga M, Hibino Y, Hagiwara S, Nakayama H. Infrared and Raman Studies of Structural Relaxation in Amorphous Tetracosane, n -C 24 H 50. Bull Chem Soc Jpn 1995; 68(5): 1323-1330. https://doi.org/10.1246/bcsj.68.1323

Williams Q, Knittle E. Infrared and raman spectra of Ca5(PO4)3F2-fluorapatite at high pressures: Compression-induced changes in phosphate site and Davydov splittings. J Phys Chem Solids 1996; 57(4): 417-422. https://doi.org/10.1016/0022-3697(95)00285-3

Strobl GR, Hagedorn W. Raman Spectroscopic Method for Determining the Crystallinity of Polyethylene. AIP Conf Proc 1978; 16(7): 1181-1193. https://doi.org/10.1002/pol.1978.180160704

Gall MJ, Hendra PJ, Peacock OJ, Cudby MEA, Willis HA. The laser-Raman spectrum of polyethylene. The assignment of the spectrum to fundamental modes of vibration. Spectrochim. Acta Part A Mol Spectrosc 1972; 28(8): 1485-1496. https://doi.org/10.1016/0584-8539(72)80118-1

Gall MJ, Hendra PJ, Peacock CJ, Cudby MEA, Willis HA. Laser-Raman spectrum of polyethylene: Part 1. Structure and analysis of the polymer. Polymer (Guildf) 1972; 13(3): 104-108. https://doi.org/10.1016/S0032-3861(72)80003-X

Snyder RG. Vibrational study of the chain conformation of the liquid n-paraffins and molten polyethylene. J Chem Phys 1967; 47(4): 1316-1360. https://doi.org/10.1063/1.1712087

Boumdouha N, Safidine Z, Boudiaf A, Djalel Eddine T, Oukara A. Élaboration et caractérisation mécanique des mousses polyuréthanes modifiés. in Fourth International Conference on Energy, Materials, Applied Energetics and Pollution ICEMAEP 2018, Constantine, Algeria: Université Frères Mentouri Constantine 2018; 1:, 136-142.

Suoninen EJ. Optical microscopy. Surf. Charact. A User’s Sourceb 2007; pp. 54-56. https://doi.org/10.1002/9783527612451.ch1

Grandbois A. Chapitre Iii. in Né à Québec, Les Presses de l’Université de Montréal 2018 ; pp. 70-84.

Malíková M, Rychlý J, Matisová-Rychlá L, Csomorová K. Janigová I, Wilde HW. Assessing the progress of degradation in polyurethanes by chemiluminescence. I. Unstabilized polyurethane films. Polym Degrad Stab 2010; 95(12): 2367-2375. https://doi.org/10.1016/j.polymdegradstab.2010.08.016

Raka L, Bogoeva-Gaceva G, Lu K, Loos J. Characterization of latex-based isotactic polypropylene/clay nanocomposites. Polymer (Guildf) 2009; 50(15): 3739-3746. https://doi.org/10.1016/j.polymer.2009.05.044

Allen V, Kalivas JH, Rodriguez RG. Post-consumer plastic identification using Raman spectroscopy. Appl Spectrosc 1999; 53(6): 672-681. https://doi.org/10.1366/0003702991947324

Bentley PA, Hendra PJ. Polarised FT Raman studies of an ultra-high modulus polyethylene rod. Spectrochim. Acta Part A Mol Spectrosc 1995; 51(12): 2125-2131. https://doi.org/10.1016/0584-8539(95)01513-3

Peskin AV, Winterbourn CC. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 2000; 293(1-2): 157-166. https://doi.org/10.1016/S0009-8981(99)00246-6

Gierlinger N. New insights into plant cell walls by vibrational microspectroscopy. Appl Spectrosc Rev 2018; 53(7): 517-551. https://doi.org/10.1080/05704928.2017.1363052

Cherukupalli SS, Ogale AA. Online measurements of crystallinity using Raman spectroscopy during blown film extrusion of a linear low-density polyethylene. Polym Eng Sci 2004; 44(8): 1484-1490. https://doi.org/10.1002/pen.20144

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.