Abstract
Characterizations of an (E, E)-intuitionistic fuzzy subalgebra and an (q(kT,KF), EV q(KT,KF))-intuitionistic fuzzy subalgebra are provided. Given special sets, so called intuitionistic fuzzy E-subsets, intuitionistic fuzzy q-subsets and intuitionistic fuzzy (q(kT,KF), EV q(KT,KF))-subsets, conditions for the intuitionistic fuzzy (q(kT,KF), EV q(KT,KF))-subsets, intuitionistic fuzzy -subsets and intuitionistic fuzzy -subsets to be subalgebras are discussed.
References
Atanassov KT. Intuitionistic sets. Fuzzy Sets and Systems 1986; 20(1): 87. https://doi.org/10.1016/S0165-0114(86)80034-3
Chajda I. Sheffer operation in ortholattices. Acta Univ Palack Olomuc Fac Rerum Natur Math 2005; 44(1): 19-23.
Chunsee N, Julatha P, Iampan A. Fuzzy set approach to ideal theory on Sheffer stroke BE-algebras. Journal of Mathematics and Computer Science 2024; 34(3): 283-294 https://doi.org/10.22436/jmcs.034.03.07
Katican OT, Borumand Saeid A. Relation between Sheffer Stroke and Hilbert Algebras. Categories and General Algebraic Structures with Applications 2021; 14(1): 245-268. https://doi.org/10.29252/cgasa.14.1.245
Sheffer HM. A set of five independent postulates for Boolean algebras, with application to logical constants. Transactions of the American Mathematical Society 1913; 14(4): 481-488. https://doi.org/10.1090/S0002-9947-1913-1500960-1
McCune W, Veroff R, Fitelson B, Harris K, Feist A, Wos L. Short single axioms for Boolean algebra. J Autom Reason 2002; 29(1): 1-16. https://doi.org/10.1023/A:1020542009983
Oner T, Jun YB, Senturk I. Subalgebras of Sheffer Stroke BCK-Algebras Illuminated by the New Fuzzy Set Environment. New Mathematics and Natural Computation 2024; 1-16. https://doi.org/10.1142/S1793005725500243
Oner T, Jun YB. Ideals of Sheffer stroke Hilbert algebras based on fuzzy points. Honam Mathematical J 2021; 46: 82-100. https://doi.org/10.21203/rs.3.rs-712955/v1
Oner T, Senturk I, Rezaei A. A note on translation of bipolar-valued fuzzy sets in Sheffer stroke MTL-algebras. In: Data-Driven Modelling with Fuzzy Sets. CRC Press 2024; 177- 203. https://doi.org/10.1201/9781003487029-9
Jun YB, Oner T, Turan DS, Ordin B. Bipolar-valued fuzzy filters of Sheffer stroke BL-algebras. New Mathematics Natural Computation 2024; 20(2): 505. https://doi.org/10.1142/S1793005724500273
Oner T, Senturk I, Jun YB, Saeid AB. Sheffer stroke BE-algebras based on the Soft Environment. Journal of Algebraic Systems 2024.
Oner T, Kalkan T, Cakar M. Sheffer stroke BCH-algebras. Journal of International Mathematical Virtual Institute 2021; 11(1): 119-135. https://doi.org/10.21203/rs.3.rs-712955/v1
Oner T, Kalkan T, Saeid AB. Sheffer stroke BH-algebras. International Journal of Maps in Mathematics, 2024, 7(2): 284-306.
Oner T, Senturk I. The Sheffer stroke operation reducts of basic algebra. Open Mathematics 2017; 15: 926-935. https://doi.org/10.1515/math-2017-0075
Senturk I, Oner T, Jun YB, Saeid AB. Exploring fuzzy filters and their relationships on Sheffer stroke basic algebras. Soft Comput 2024. https://doi.org/10.1007/s00500-024-10361-6
Senturk I. A new on State operators in Sheffer stroke basic algebras. Soft Computing 2021; 25: 11471-11484. https://doi.org/10.1007/s00500-021-06059-8
Senturk I, Riecan B, Bosbach B. State operators on Sheffer stroke MTL-algebras. Bull Int Math Virtual Inst 2022; 12(1): 181-193.
Senturk I, Oner T. A construction of very true operator on Sheffer stroke MTL-algebras. Int J Maps Math 2021; 4: 93-106.
Senturk I, Oner T, Borumand Saeid A. Congruences of Sheffer stroke basic algebras. An St Univ Ovidius Constanta Ser 2020; 28(2): 209-228. https://doi.org/10.2478/auom-2020-0028
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.