Abstract
Inequalities involving fractional operators have also been an active area of research. These inequalities play a crucial role in establishing bounds, estimates, and stability conditions for solutions to fractional integrals. In this paper, firstly we establish these new identities for the case of twice differentiable functions and Caputo-Fabrizio fractional integrals. By utilizing these new identities, novel inequalities are obtained for trigonometric convex functions, and exponential trigonometric convex functions and exponential trigonometric convex functions. It is expected that the outcomes of this research will point to new developments in the study of fractional calculus.
References
Alsaedi A, Alsulami M, Srivastava HM, Ahmad B, Ntouyas S. K. Existence theory for nonlinear third-order ordinary differential equations with nonlocal multi-point and multi-strip boundary conditions. Symmetry 2019; 11(2): 281.
Aslam M, Murtaza R, Abdeljawad T, Rahman GU, Khan A, Khan H, Gulzar H. A fractional order HIV/AIDS epidemic model with Mittag-Leffler kernel. Advances in Difference Equations 2021; 2021: 1-15.
Mohammadi H, Kumar S, Rezapour S, Etemad S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos, Solitons & Fractals 2021; 144: 110668.
Etemad S, Avci I, Kumar P, Baleanu D, Rezapour S. Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version. Chaos, Solitons & Fractals 2022; 162: 112511.
Yang H, Qaisar S, Munir A, Naeem M. New inequalities via Caputo-Fabrizio integral operator with applications. Aims Mathematics 2023; 8(8): 19391-19412.
Junjua MUD, Qayyum A, Munir A, Budak H, Saleem MM, Supadi SS. A study of some new Hermite-Hadamard inequalities via specific convex functions with a Applications. Mathematics 2024; 12(3): 478.
Kara H, Budak H, Etemad S, Rezapour S, Ahmad H, Kaabar MK. A study on the new class of inequalities of midpoint-type and trapezoidal-type based on twice differentiable functions with Conformable Operators. Journal of Function Spaces 2023; 2023.
Baleanu D, Mohammed PO, Zeng S. Inequalities of trapezoidal type involving generalized fractional integrals. Alexandria Engineering Journal 2020; 59(5): 2975-2984.
Hezenci F, Budak H. ovel results on trapezoid-type inequalities for conformable fractional integrals. Turkish Journal of Mathematics 2023; 47(2): 425-438.
Sarikaya MZ, Set E, Yaldiz H, Basak N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Mathematical and Computer Modelling 2013; 57(9-10): 2403-2407.
Mohammed PO, Sarikaya MZ. On generalized fractional integral inequalities for twice differentiable convex functions. Journal of Computational and Applied Mathematics 2020; 372: 112740.
Afzal W, Abbas M, Hamali W, Mahnashi AM, Sen MDL. Hermite-Hadamard-type inequalities via Caputo-Fabrizio fractional integral for h -Godunova-Levin and (h1,h2) -Convex Functions. Fractal and Fractional 2023; 7(9): 687.
Nasira J, Qaisarb S, Qayyumc A, Budakd H. New results on Hermite-Hadamard type inequalities via Caputo-Fabrizio fractional integral for s -convex function. Filomat 2023; 37(15): 4943-4957.
Fahad A, Nosheen A, Khan KA, Tariq M, Mabela RM, Alzaidi AS. Some novel inequalities for Caputo Fabrizio fractional integrals involving (α,s) -convex functions with applications. Mathematical and Computer Modelling of Dynamical Systems 2024; 30(1): 1-15.
Khalil R, Al Horani M, Yousef A, Sababheh M. A new definition of fractional derivative. Journal of Computational and Applied Mathematics 2014; 264: 65-70.
Nasir J, Qaisar S, Butt SI, Qayyum A. Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator. Aims Mathematics 2022; 7(3): 3303-3320.
Budak H, Hezenci F, Kara H. On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals. Mathematical methods in the Applied Sciences 2021; 44(17): 12522-12536.
Budak H, Hezenci F, Kara H. On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals. Advances in Difference Equations 2021; 2021(1): 1-32.
Qayyum A. A weighted Ostrowski-Grüss type inequality for twice differentiable mappings and applications. Int J Math Comput 2008; 1: 63-71.
Saleem MM, Ullah Z, Abbas T, Raza MB, Qayyum A. A new Ostrowski’s type inequality for quadratic kernel. International Journal of Analysis and Applications 2022; 20, 28-28.
Rashid S, Noor MA, Noor KI, Chu YM. Ostrowski type inequalities in the sense of generalized K -fractional integral operator for exponentially convex functions. Aims Mathematics 2020; 5(3): 2629-2645.
Gurbuz M, Tasdan Y, Set E. Ostrowski type inequalities via the Katugampola fractional integrals. Aims Mathematics 2020; 5(1): 42-54.
Budak H. Weighted Newton-type inequalities for various function classes via Riemann-Liouville fractional integrals, Communications in Calculus Analysis, Special Functions and Mathematical Physics 2024; 1(1): 24-41.
Budak H. New Version of Simpson Type Inequality for Ψ -Hilfer Fractional Integrals. Advances in Analysis and Applied Mathematics 2024; 1(1): 1-11.
Jensen JLWV. Sur les fonctions convexes et les in egalit es entre les valeurs moyennes. Acta Mathematica 1906; 30(1): 175-19.
Mihe VG. A generalization of the convexity, Seminer on functional equations, approximation and convexity, clujnapoca. Romania 1993.
Varošanec S. On h-convexity. Journal of Mathematical Analysis and Applications 2007; 326(1): 303-311.
Kadakal HURIYE. Hermite-Hadamard type inequalities for trigonometrically convex functions. Sci Stud Res Ser Math Inform 2018; 28(2): 19-28.
Kadakal M Iscan I, Agarwal P, Jleli M. Exponential trigonometric convex functions and Hermite-Hadamard type inequalities. Mathematica Slovaca 2021; 71(1): 43-56.
Gorenflo R, Mainardi F. Fractional calculus: integral and differential equations of fractional order, Springer vienna 1997; 223-276.
Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation Applications 2015; 1(2): 73-85.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.