Two Integral Operators Defined with Bessel Functions on the Class N(β)

Authors

  • Nicoleta Ularu University of Pitesti, Pitesti, Romania

DOI:

https://doi.org/10.6000/1927-5129.2013.09.10

Keywords:

 Analytic functions, integral operator of the first kind, Bessel function.

Abstract

Using Bessel functions of first kind we introduce new integral operators and show that these operators are in the class N(β).

References

Arif M, Raza M. Some properties of an integral operator defined by Bessel functions. Acta Universitatis Apulensis 2011; 26: 69-74.

Baricz A, Frasin BA. Univalence of integral operators involving Bessel functions. Appl Math Lett 2010; 23(4): 371-76. http://dx.doi.org/10.1016/j.aml.2009.10.013

Owa S, Srivastava HM. Some generalized convolution properties associated with certain subclasses of analytic functions. J Inequalit Pure Appl Mathe 2002; 3(3): Art.ID 42, 13 pages.

Szász R, Kupán P. About the univalence of the Bessel functions. Stud Univ Babes-Bolyai Math 2009; 54(1), 127-32.

Ularu N, Breaz D. Univalence conditions and properties for some new integral operators, Mathematics Without Boundaries: Surveys in Pure Mathematics, to appear.

Downloads

Published

2013-01-05

How to Cite

Nicoleta Ularu. (2013). Two Integral Operators Defined with Bessel Functions on the Class N(β) . Journal of Basic & Applied Sciences, 9, 57–59. https://doi.org/10.6000/1927-5129.2013.09.10

Issue

Section

Mathematics