Yo Jyo Hen Shi Ko (YHK) Modulates the Expression of Proteins Involved in de novo Lipogenesis and Lipid Exportation in Experimental Nonalcoholic Steatohepatitis (NASH)


Nonalcoholic fatty liver disease (NAFLD)
Nonalcoholic steatohepatitis (NASH)
ob / ob
Yo Jyo Hen Shi Ko (YHK)

How to Cite

Pereira, I. V. A., Souza de Oliveira, C. P. M., Stefano, J. T., Halla, N. C., Alves, J. A. F., Laurindo, F. R. M., & Carrilho, F. J. (2013). Yo Jyo Hen Shi Ko (YHK) Modulates the Expression of Proteins Involved in de novo Lipogenesis and Lipid Exportation in Experimental Nonalcoholic Steatohepatitis (NASH) . Journal of Pharmacy and Nutrition Sciences, 3(1), 48–58. https://doi.org/10.6000/1927-5951.2013.03.01.6


Previous study by our group showed the protective effect of Yo Jyo Hen Shi Ko (YHK) a natural compound in experimental nonalcoholic steatohepatitis (NASH). The aim of this study was to evaluate whether YHK modulates lipid metabolism.
NASH was induced in male ob/ob mice by methionine/choline-deficient (MCD) diet for 4 weeks. YHK-treated animals (YHK) received YHK solution orally (20 mg/kg/day) by gavage while MCD (n=6) group received only vehicle. The control animals (CTRL; n=6) received standard diet. Liver fragments were collected for mRNA and protein isolation. The analysis of gene expression and protein was performed by RT-qPCR and western blot, respectively.
A significant decrease in srebp1c mRNA and protein expression and fasn mRNA expression was observed in MCD+YHK group. A significant increase in MTP protein expression was observed in the MCD+YHK vs MCD group while a decreased expression was observed in the MCD vs CTRL group. The expression of the scd1 in the MCD group was diminished. The Perilipin protein expression was augmented in the MCD group in comparison with MCD+YHK and CTRL groups.
YHK modulated genes involved in the synthesis and exportation of hepatic lipids, probably limiting hepatocyte lipid accumulation, reducing lipogenesis and upregulating lipid exportation suggesting that the YHK can be a promising drug for treat non-alcoholic fatty liver disease (NAFLD).



Adams LA, Lymp JF, St Sauver J, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005; 129(1): 113-21. http://dx.doi.org/10.1053/j.gastro.2005.04.014

Powell EE, Cooksley WG, Hanson R, Searle J, Halliday JW, Powell LW. The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. Hepatology 1990; 11(1): 74-80. http://dx.doi.org/10.1002/hep.1840110114

Tessari P, Coracina A, Cosma A, Tiengo A. Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 2009; 19(4): 291-302. http://dx.doi.org/10.1016/j.numecd.2008.12.015

Larter CZ, Farrell GC. Insulin resistance, adiponectin, cytokines in NASH: Which is the best target to treat? J Hepatol 2006; 44(2): 253-61. http://dx.doi.org/10.1016/j.jhep.2005.11.030

Tamura S, Shimomura I. Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J Clin Invest 2005; 115(5): 1139-42. http://dx.doi.org/10.1172/JCI24930

Hasty AH, Shimano H, Yahagi N, et al. Sterol regulatory element-binding protein-1 is regulated by glucose at the transcriptional level. J Biol Chem 2000 6; 275(40): 31069-77. http://dx.doi.org/10.1074/jbc.M003335200

Hussain M, Bakillah A. New approaches to target microsomal triglyceride transfer protein. Curr Opin Lipidol 2008; 19(6): 572-8. http://dx.doi.org/10.1097/MOL.0b013e328312707c

Wetterau J, Aggerbeck L, Bouma M, et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 1992; 258(5084): 999-1001. http://dx.doi.org/10.1126/science.1439810

Oliveira CP, Stefano JT, Cavaleiro AM, et al. Association of polymorphisms of glutamate-cystein ligase and microsomal triglyceride transfer protein genes in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2010; 25(2): 357-61. http://dx.doi.org/10.1111/j.1440-1746.2009.06001.x

Bernard S, Touzet S, Personne I, et al. Association between microsomal triglyceride transfer protein gene polymorphism and the biological features of liver steatosis in patients with type II diabetes. Diabetologia 2000; 43(8): 995-9. http://dx.doi.org/10.1007/s001250051481

Straub BK, Stoeffel P, Heid H, Zimbelmann R, Schirmacher P. Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 2008; 47(6): 1936-46. http://dx.doi.org/10.1002/hep.22268

Straub BK, Herpel E, Singer S, et al. Lipid droplet-associated PAT-proteins show frequent and differential expression in neoplastic steatogenesis. Mod Pathol 2010; 23(3): 480-92. http://dx.doi.org/10.1038/modpathol.2009.191

Olofsson SO, Bostrom P, Andersson L, Rutberg M, Perman J, Boren J. Lipid droplets as dynamic organelles connecting storage and efflux of lipids. Biochim Biophys Acta 2009; 1791(6): 448-58. http://dx.doi.org/10.1016/j.bbalip.2008.08.001

Festa A, D'Agostino R, Howard G, Mykkänen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000; 102(1): 42-7. http://dx.doi.org/10.1161/01.CIR.102.1.42

Leclercq IA, Farrell GC, Schriemer R, Robertson GR. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol 2002; 37(2): 206-13. http://dx.doi.org/10.1016/S0168-8278(02)00102-2

Rinella ME, Elias MS, Smolak RR, Fu T, Borensztajn J, Green RM. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline-deficient diet. J Lipid Res 2008; 49(5): 1068-76. http://dx.doi.org/10.1194/jlr.M800042-JLR200

Caldwell S, Lazo M. Is exercise an effective treatment for NASH? Knowns and unknowns. Ann Hepatol 2009; (8 Suppl 1): S60-6.

Zhang H, Feng Q, Li HS, et al. Effects of Qushi Huayu Decoction on cathepsin B and tumor necrosis factor-alpha expression in rats with non-alcoholic steatohepatitis. Zhong Xi Yi Jie He Xue Bao 2008; 6(9): 928-33. http://dx.doi.org/10.3736/jcim20080910

Lou SY, Liu Y, Ma YY, et al. Effects of Yiqi Sanju Formula on non-alcoholic fatty liver disease: a randomized controlled trial. Zhong Xi Yi Jie He Xue Bao 2008; 6(8): 793-8. http://dx.doi.org/10.3736/jcim20080805

He CY, Wang WJ, Li B, et al. Clinical research of Yiqi Sanju Formula in treating central obese men at high risk of metabolic syndrome. Zhong Xi Yi Jie He Xue Bao 2007; 5(3): 263-7. http://dx.doi.org/10.3736/jcim20070307

Borchers AT, Sakai S, Henderson GL, et al. Shosaiko-to and other Kampo (Japanese herbal) medicines: a review of their immunomodulatory activities. J Ethnopharmacol 2000; 73(1- 2): 1-13. http://dx.doi.org/10.1016/S0378-8741(00)00334-2

de Lima VM, de Oliveira CP, Sawada LY, et al. Yo jyo hen shi ko, a novel Chinese herbal, prevents nonalcoholic steatohepatitis in ob/ob mice fed a high fat or methioninecholine- deficient diet. Liver Int 2007; 27(2): 227-34. http://dx.doi.org/10.1111/j.1478-3231.2006.01405.x

Stefano JT, de Oliveira CP, Correa-Giannella ML, et al. Nonalcoholic steatohepatitis (NASH) in ob/ob mice treated with yo jyo hen shi ko (YHK): effects on peroxisome proliferator-activated receptors (PPARs) and microsomal triglyceride transfer protein (MTP). Dig Dis Sci 2007; 52(12): 3448-54. http://dx.doi.org/10.1007/s10620-007-9810-8

Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000; 132: 365-86.

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29(9): e45. http://dx.doi.org/10.1093/nar/29.9.e45

Chan P, Tomlinson B. Antioxidant effects of Chinese traditional medicine: focus on trilinolein isolated from the Chinese herb sanchi (Panax pseudoginseng). J Clin Pharmacol 2000; 40(5): 457-61. http://dx.doi.org/10.1177/00912700022009215

Kim BH, Park KS, Chang IM. Elucidation of anti-inflammatory potencies of Eucommia ulmoides bark and Plantago asiatica seeds. J Med Food 2009; 12(4): 764-9. http://dx.doi.org/10.1089/jmf.2008.1239

Chen K, Li C. Recent advances in studies on traditional Chinese anti-aging materia medica. J Tradit Chin Med 1993; 13(3): 223-6.

Marotta F, Vangieri B, Cecere A, Gattoni A. The pathogenesis of hepatocellular carcinoma is multifactorial event. Novel immunological treatment in prospect. Clin Ter 2004; 155(5): 187-99.

Marotta F, Harada M, Goh K, Lorenzetti A, Gelosa F, Minelli E. Phytotherapeutic compound YHK exerts an inhibitory effect on early stage of experimentally-induced neoplastic liver lesions. Ann Hepatol 2006; 5(4): 268-72.

Marotta F, Safran P, Tajiri H, et al. Improvement of hemorheological abnormalities in alcoholics by an oral antioxidant. Hepatogastroenterology 2001; 48(38): 511-7.

Chande N, Laidlaw M, Adams P, Marotta P. Yo Jyo Hen Shi Ko (YHK) improves transaminases in nonalcoholic steatohepatitis (NASH): a randomized pilot study. Dig Dis Sci 2006; 51(7): 1183-9. http://dx.doi.org/10.1007/s10620-006-8030-y

Koteish A, Diehl AM. Animal models of steatosis. Semin Liver Dis 2001; 21(1): 89-104. http://dx.doi.org/10.1055/s-2001-12932

Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109(9): 1125-31.

Yahagi N, Shimano H, Hasty AH, et al. Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lep(ob)/Lep(ob) mice. J Biol Chem 2002; 277(22): 19353-7. http://dx.doi.org/10.1074/jbc.M201584200

Ahmed MH, Byrne CD. Modulation of sterol regulatory element binding proteins (SREBPs) as potential treatments for non-alcoholic fatty liver disease (NAFLD). Drug Discov Today 2007; 12(17-18): 740-7. http://dx.doi.org/10.1016/j.drudis.2007.07.009

Tsukamoto H, She H, Hazra S, Cheng J, Wang J. Fat paradox of steatohepatitis. J Gastroenterol Hepatol 2008; 23(Suppl 1): S104-7. http://dx.doi.org/10.1111/j.1440-1746.2007.05294.x

Serviddio G, Sastre J, Bellanti F, Vina J, Vendemiale G, Altomare E. Mitochondrial involvement in non-alcoholic steatohepatitis. Mol Aspects Med 2008; 29(1-2): 22-35. http://dx.doi.org/10.1016/j.mam.2007.09.014

Rizki G, Arnaboldi L, Gabrielli B, et al. Mice fed a lipogenic methionine-choline-deficient diet develop hypermetabolism coincident with hepatic suppression of SCD-1. J Lipid Res 2006; 47(10): 2280-90. http://dx.doi.org/10.1194/jlr.M600198-JLR200

Bjorkegren J, Beigneux A, Bergo MO, Maher JJ, Young SG. Blocking the secretion of hepatic very low density lipoproteins renders the liver more susceptible to toxininduced injury. J Biol Chem 2002; 277(7): 5476-83. http://dx.doi.org/10.1074/jbc.M108514200

Londos C, Sztalryd C, Tansey JT, Kimmel AR. Role of PAT proteins in lipid metabolism. Biochimie 2005; 87(1): 45-9. http://dx.doi.org/10.1016/j.biochi.2004.12.010

Wolins NE, Brasaemle DL, Bickel PE. A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett 2006; 580(23): 5484-91. http://dx.doi.org/10.1016/j.febslet.2006.08.040

Straub BK, Schirmacher P. Pathology and biopsy assessment of non-alcoholic fatty liver disease. Dig Dis 2010; 28(1): 197-202. http://dx.doi.org/10.1159/000282086

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 Claudia Pinto Marques Souza de Oliveira, Isabel Veloso Alves Pereira, José Tadeu Stefano, Nathalia Cavalheiro Halla, João Avancini Ferreira Alves, Francisco Rafael Martins Laurindo, Flair José Carrilho