Evaluation of Antitumor and Antioxidant Potential of a Polyherbal Extract on Ehrlich’s Ascites Carcinoma Xenografted Mice


 Anti-oxidant activities, polyherbal extract (PHE), antitumor activity, EAC.

How to Cite

Mukesh Kumar Das, K.Mukkanti, G. Srinivasa Rao, Prafulla Kumar Sahu, & L. Silpavathi. (2014). Evaluation of Antitumor and Antioxidant Potential of a Polyherbal Extract on Ehrlich’s Ascites Carcinoma Xenografted Mice. Journal of Pharmacy and Nutrition Sciences, 4(1), 20–26. https://doi.org/10.6000/1927-5951.2014.04.01.4


Objective: Indigenous herbs alone or in combination are widely used in Indian system of medicine to treat innumerable ailments since time immemorial. Many strategies has been adopted to enhance anticarcinogenic responses and to establish therapeutic benefits. Poly herbal extracts (PHE), one of the emerging trends of modern medicine, where the assorted active principles work vibrantly to produce a maximum therapeutic activity with minimal toxicity by virtue of its additive, potentative, synergistic, agonistic or antagonistic effects. Though, Withania somnifera, Oroxylum indicum and Calotropis gigentia are independently established as potent antineoplastic agents, their antitumor and antioxidant perspective in combination is yet to be studied. The proposed study ascertains the assorted antineoplastic and antioxidant potential of the said potent herbs in PHE.
Method: The antitumor potency of the PHE at a dose of 400 mg/kg body weight was screened on Ehrlich’s ascites carcinoma (EAC) xenografted swiss albino mice. The in-vivo anti-oxidant activity was investigated on the basis of hepatic anti-oxidant enzymes’ levels.
Result: The PHE at the aforementioned dose showed a restoring effect on altered hematological parameters (***P< 0.05 considered to be significant), down turn in ascitic tumor volume and increase in mean survival time. A significant improvement in biochemical parameters (Enzymic antioxidants) was too observed.
Conclusion:The study epitomizes the PHE (400 mg/kg body weight) as a potent anti tumor and anti-oxidant preparation with synergistic effects on EAC bearing mice.



Graham JG, Quinn ML, Fabricant DS, Farnsworth NR. Plants used against cancer – an extension of the work of Jonathan Hartwell. J Ethnopharmacol 2000; 73(3): 347-377. http://dx.doi.org/10.1016/S0378-8741(00)00341-X

Wang H, Chan Y-L, Li T-L, Wu C-J. Improving cachectic symptoms and immune strength of tumour-bearing mice in chemotherapy by a combination of Scutellaria baicalensis and Qing-Shu-Yi-Qi-Tang. Eur J Cancer 2012; 48(7): 1074- 1084. http://dx.doi.org/10.1016/j.ejca.2011.06.048

Kulkarni SK, Dhir A. Withania somnifera: An Indian ginseng. Prog Neuro-Psychoph 2008; 32(5): 1093-1105. http://dx.doi.org/10.1016/j.pnpbp.2007.09.011

Mondal S, Mandal C, Sangwan R, Chandra S, Mandal C. Withanolide D induces apoptosis in leukemia by targeting the activation of neutral sphingomyelinase-ceramide cascade mediated by synergistic activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Molecular Cancer 2010; 9(9), article no-239:1-17. http://dx.doi.org/10.1186/1476-4598-9-239

Yu Y, Hamza A, Zhang T, Gu M, Zou P, Newman B, et al. Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 2010; 79(4): 542-551. http://dx.doi.org/doi:10.1016/j.bcp.2009.09.017

Lee J, Hahm ER, Singh SV. Withaferin A inhibits activation of signal transducer and activator of transcription 3 in human breast cancer cells. Carcinogenesis 2010; 31(11): 1991- 1998. http://dx.doi.org/doi:10.1093/carcin/bgq175

Hahm ER, Moura MB, Kelley EE, Houten BV, Shiva S, Singh SV. Withaferin A-Induced Apoptosis in Human Breast Cancer Cells Is Mediated by Reactive Oxygen Species. PLoS One 2011; 6(8): 1-12. http://dx.doi.org/doi:10.1371/journal.pone.0023354

Yang ES, Choi MJ, Kim JH, Choi KS, Kwon TK. Combination of withaferin A and X-ray irradiation enhances apoptosis in U937 cells. Toxicol In Vitro 2011; 25(8): 1803-1810. http://dx.doi.org/10.1016/j.tiv.2011.09.016

Visavadiya NP, Narasimhacharya AVRL. Hypocholesteremic and antioxidant effects of Withania somnifera (Dunal) in hypercholesteremic rats. Phytomedicine 2007; 14(2-3): 136- 142. http://dx.doi.org/10.1016/j.phymed.2006.03.005

Boer HJd, Lamxay V, Björk L. Comparing medicinal plant knowledge using similarity indices: A case of the Brou, Saek and Kry in Lao PDR. J Ethnopharmacol 2012; 141(1): 481- 500. http://dx.doi.org/10.1016/j.jep.2012.03.017

Krüger A, Ganzera M. Oroxylum indicum seeds – Analysis of flavonoids by HPLC–MS. J Pharm Biomed Anal 2012; 70: 553-556. http://dx.doi.org/10.1016/j.jpba.2012.05.005

Yan R, Cao Y, Chen C, Dai H, Yu S, Wei J, et al. Antioxidant flavonoids from the seed of Oroxylum indicum. Fitoterapia 2011; 82(6): 841-848. http://dx.doi.org/10.1016/j.fitote.2011.04.006

Costa-Lotufo LV, Khan MTH, Ather A, Wilke DV, Jimenez PC, Pessoa C, et al. Studies of the anticancer potential of plants used in Bangladeshi folk medicine. J Ethnopharmacol 2005; 99(1): 21-30. http://dx.doi.org/10.1016/j.jep.2005.01.041

Siriwatanametanon N, Fiebich BL, Efferth T, Prieto JM, Heinrich M. Traditionally used Thai medicinal plants: In vitro anti-inflammatory, anticancer and antioxidant activities. J Ethnopharmacol 2010; 130(2): 196-207. http://dx.doi.org/10.1016/j.jep.2010.04.036

Wang Z, Wang M, Mei W, Han Z, Dai H. A new cytotoxic pregnanone from Calotropis gigantean. Molecules 2008; 13(12): 3033-3039. http://dx.doi.org/10.3390/molecules13123033

Rathod NR, Raghuveer I, Chitme HR, Chandra R. Free radical scavenging activity of Calotropis gigantean on streptozotocin-induced diabetic rats. Indian J Pharm Sci 2009; 71(6): 615-621. http://dx.doi.org/10.4103/0250-474X.59542

Habib MR, Aziz MA, Karim MR. Inhibition of Ehrlich’s ascites carcinoma by ethyl acetate extract from the flower of Calotropis gigantea L. in mice. J Appl Biomed 2010; 8(1): 47- 54. http://dx.doi.org/10.2478/v10136-009-0007-7

Rajeshkumar NV, Joy KL, Kuttan G, Ramsewak RS, Nair MG, Kuttan R. Antitumour and anticarcinogenic activity of Phyllanthus amarus extract. J Ethnopharmacol 2002; 81(1): 17-22. http://dx.doi.org/10.1016/S0378-8741(01)00419-6

Sur P, Ganguly DK. Tea plant roots extract (TRE) as an antineoplastic agent. Planta Med 1994; 60(2): 106-109.

Sardar S, Ghosh R, Mondal A, Chatterjee M. Protective role of vanadium in the survival of hosts during the growth of a transplantable murine lymphoma and its profound effects on the rates and patterns of biotransformation. Neoplasm 1993; 40(1): 27-30.

Sri Balasubashini M, Karthigayan S, Somasundaram ST, Balasubramanian T, Viswanathan V, Raveendran P, Menon VP. Fish venom (Pterios volitans) peptide reduces tumor burden and ameliorates oxidative stress in Ehrlich’s ascites carcinoma xenografted mice. Bioorg Med Chem Lett 2006; 16(24): 6219-6225. http://dx.doi.org/10.1016/j.bmcl.2006.09.025

Fecchio D, Sirois P, Russo M, Jancar S. Studies on inflammatory response induced by Ehrlich tumor in mice peritoneal cavity. Nflammation 1990; 14(1): 125-132.

Gupta M, Mazumder UK, Kumar RS, Sivakumar T, Vamsi MLM. Antitumor activity and antioxidant status of Caesalpinia bonducella against Ehrlich ascites carcinoma in Swiss albino mice. J Pharmacol Sci 2004; 94(2): 177-184.

Kinnula VL, Crapo JD. Superoxide dismutases in malignant cells and human tumors. Free Radic Biol Med 2004; 36(6): 718-744. http://dx.doi.org/10.1016/j.freeradbiomed.2003.12.010

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2014 Mukesh Kumar Das, K.Mukkanti, G. Srinivasa Rao, Prafulla Kumar Sahu , L. Silpavathi