Oxidative Stress Promotes Eating Behavior and Obesity in C. elegans via EGL-4 / DAF-16 Signaling


 Oxidative stress, Eating behavior, Obesity, EGL4/cGMP-dependent protein kinases, DAF-16/FOXO, C. elegans, HEK293 cells.

How to Cite

Wensheng Li, Eric Blough, Cuifen Wang, Larry Dial, Omolola Olajide, Randa Al-Jayoussi, Nesreen BenHamed, & Miaozong Wu. (2015). Oxidative Stress Promotes Eating Behavior and Obesity in C. elegans via EGL-4 / DAF-16 Signaling. Journal of Pharmacy and Nutrition Sciences, 5(2), 129–136. https://doi.org/10.6000/1927-5951.2015.05.02.5


Oxidative stress is associated with pathophysiological progress of many diseases. The objective of study was to investigate whether increased environmental oxidative stress stimulation can promote excessive eating behavior, a common cause of obesity, and to identify the molecular mechanism.The cGMP-dependent kinase (PKG) activator 8-pCPT-cGMP was applied in worm swimming assay to study behavior shifting between quiescence and foraging in C. elegans. Genetically modified C. elegans (egl-4 loss or gain of function, and daf-16 mutant) were treated with paraquat, an oxidative stress inducer. Worm’s foraging behavior, body fat accumulation and body length were determined. The foxo1::gfp-transfectedHEK293 cells and C. elegans (daf-16::gfpTJ356) were further used to examine the effect of paraquat on PKG expression and FOXO nuclear translocation.A novel swimming assay using PKGactivator stimulation was developed, which allows the rapid and effective study of foraging behavior in C. elegans. Paraquat treatment significantly inhibited quiescence, promoted foraging behavior, increased body fat accumulation and body growth. These responses were associated with diminished PKG expression/activation and increased FOXO (DAF-16) nuclear translocation in both transfected C. elegans and HEK293 cells.Our data suggest that PKG/FOXO signaling may plays an important role in mediating oxidative stress-induced excessive eating behavior and obesity development.



Finkelstein EA, Trogdon JG, Cohen JW, Dietz W. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff (Millwood) 2009; 28(5): w822-31. http://dx.doi.org/10.1377/hlthaff.28.5.w822

Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 2014; 311(8): 806-14. http://dx.doi.org/10.1001/jama.2014.732

Lev-Ran A. Human obesity: an evolutionary approach to understanding our bulging waistline. Diabetes Metab Res Rev 2001; 17(5): 347-62. http://dx.doi.org/10.1002/dmrr.230

Osborne KA, Robichon A, Burgess E, Butland S, Shaw RA, Coulthard A, et al. Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 1997; 277(5327): 834-6. http://dx.doi.org/10.1126/science.277.5327.834

Fitzpatrick MJ, Sokolowski MB. In Search of Food: Exploring the Evolutionary Link Between cGMP-Dependent Protein Kinase (PKG) and Behaviour. Integr Comp Biol 2004; 44(1): 28-36. http://dx.doi.org/10.1093/icb/44.1.28

You YJ, Kim J, Raizen DM, Avery L. Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab 2008; 7(3): 249-57. http://dx.doi.org/10.1016/j.cmet.2008.01.005

Moon TM, Osborne BW, Dostmann WR. The switch helix: a putative combinatorial relay for interprotomer communication in cGMP-dependent protein kinase. Biochim Biophys Acta 2013; 1834(7): 1346-51. http://dx.doi.org/10.1016/j.bbapap.2013.02.009

Kaun KR, Sokolowski MB. cGMP-dependent protein kinase: linking foraging to energy homeostasis. Genome 2009; 52(1): 1-7. http://dx.doi.org/10.1139/G08-090

Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ, Sundaram MV, et al. Lethargus is a Caenorhabditis elegans sleep-like state. Nature 2008; 451(7178): 569-72. http://dx.doi.org/10.1038/nature06535

Ghosh R, Emmons SW. Calcineurin and protein kinase G regulate C. elegans behavioral quiescence during locomotion in liquid. BMC Genetics 2010; 11: 7. http://dx.doi.org/10.1186/1471-2156-11-7

Inserte J, Hernando V, Vilardosa U, Abad E, Poncelas-Nozal M, Garcia-Dorado D. Activation of cGMP/protein kinase G pathway in postconditioned myocardium depends on reduced oxidative stress and preserved endothelial nitric oxide synthase coupling. J Am Heart Assoc 2013; 2(1): e005975. http://dx.doi.org/10.1161/JAHA.112.005975

Hui L, Hong Y, Jingjing Z, Yuan H, Qi C, Nong Z. HGF suppresses high glucose-mediated oxidative stress in mesangial cells by activation of PKG and inhibition of PKA. Free Radic Biol Med 2010; 49(3): 467-73. http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.002

Rudyk O, Phinikaridou A, Prysyazhna O, Burgoyne JR, Botnar RM, Eaton P. Protein kinase G oxidation is a major cause of injury during sepsis. Proc Natl Acad Sci USA 2013; 110(24): 9909-13. http://dx.doi.org/10.1073/pnas.1301026110

Liu S, Ma X, Gong M, Shi L, Lincoln T, Wang S. Glucose down-regulation of cGMP-dependent protein kinase I expression in vascular smooth muscle cells involves NAD(P)H oxidase-derived reactive oxygen species. Free Radic Biol Med 2007; 42(6): 852-63. http://dx.doi.org/10.1016/j.freeradbiomed.2006.12.025

Ghosh R, Emmons SW. Episodic swimming behavior in the nematode C. elegans. J Exp Biol 2008; 211(Pt 23): 3703-11. http://dx.doi.org/10.1242/jeb.023606

Wang C, Blough ER, Arvapalli R, Dai X, Paturi S, Manne N, et al. Metabolic syndrome-induced tubulointerstitial injury: role of oxidative stress and preventive effects of acetaminophen. Free Radic Biol Med 2013; 65: 1417-26. http://dx.doi.org/10.1016/j.freeradbiomed.2013.10.005

Keaney JF, Jr., Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol 2003; 23(3): 434-9. http://dx.doi.org/10.1161/01.ATV.0000058402.34138.11

Ali S, Jain SK, Abdulla M, Athar M. Paraquat induced DNA damage by reactive oxygen species. Biochem Mol Biol Int 1996; 39(1): 63-7. http://dx.doi.org/10.1080/15216549600201061

Kanao T, Sawada T, Davies SA, Ichinose H, Hasegawa K, Takahashi R, et al. The nitric oxide-cyclic GMP pathway regulates FoxO and alters dopaminergic neuron survival in Drosophila. PLoS One 2012; 7(2): e30958. http://dx.doi.org/10.1371/journal.pone.0030958

Borniquel S, Garcia-Quintans N, Valle I, Olmos Y, Wild B, Martinez-Granero F, et al. Inactivation of Foxo3a and subsequent downregulation of PGC-1 alpha mediate nitric oxide-induced endothelial cell migration. Mol Cell Biol 2010; 30(16): 4035-44. http://dx.doi.org/10.1128/MCB.00175-10

Kwon IK, Wang R, Thangaraju M, Shuang H, Liu K, Dashwood R, et al. PKG inhibits TCF signaling in colon cancer cells by blocking beta-catenin expression and activating FOXO4. Oncogene 2010; 29(23): 3423-34. http://dx.doi.org/10.1038/onc.2010.91

Kitamura T, Feng Y, Kitamura YI, Chua SC, Jr., Xu AW, Barsh GS, et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med 2006; 12(5): 534-40. http://dx.doi.org/10.1038/nm1392

Hong SH, Lee KS, Kwak SJ, Kim AK, Bai H, Jung MS, et al. Minibrain/Dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in Drosophila and mammals. PLoS Genet 2012; 8(8): e1002857. http://dx.doi.org/10.1371/journal.pgen.1002857

Ren H, Plum-Morschel L, Gutierrez-Juarez R, Lu TY, Kim-Muller JY, Heinrich G, et al. Blunted refeeding response and increased locomotor activity in mice lacking FoxO1 in synapsin-Cre-expressing neurons. Diabetes 2013; 62(10): 3373-83. http://dx.doi.org/10.2337/db13-0597

Wu M, Katta A, Gadde MK, Liu H, Kakarla SK, Fannin J, et al. Aging-associated dysfunction of akt/protein kinase B: s-nitrosylation and acetaminophen intervention. PLoS One 2009; 4(7): e6430. http://dx.doi.org/10.1371/journal.pone.0006430

Wang Y, Wu M, Al-Rousan R, Liu H, Fannin J, Paturi S, et al. Iron-induced cardiac damage: role of apoptosis and deferasirox intervention. J Pharmacol Exp Ther 2011; 336(1): 1-8. http://dx.doi.org/10.1124/jpet.110.172668

Laufs U, Wassmann S, Czech T, Munzel T, Eisenhauer M, Bohm M, et al. Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscler Thromb Vasc Biol 2005; 25(4): 809-14. http://dx.doi.org/10.1161/01.ATV.0000158311.24443.af

Kelishadi R, Mirghaffari N, Poursafa P, Gidding SS. Lifestyle and environmental factors associated with inflammation, oxidative stress and insulin resistance in children. Atherosclerosis 2009; 203(1): 311-9. http://dx.doi.org/10.1016/j.atherosclerosis.2008.06.022

Srimahachota S, Wunsuwan R, Siritantikorn A, Boonla C, Chaiwongkarjohn S, Tosukhowong P. Effects of lifestyle modification on oxidized LDL, reactive oxygen species production and endothelial cell viability in patients with coronary artery disease. Clin Biochem 2010; 43(10-11): 858-62. http://dx.doi.org/10.1016/j.clinbiochem.2010.04.056

Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 2008; 57(8): 1071-7. http://dx.doi.org/10.1016/j.metabol.2008.03.010

Galili O, Versari D, Sattler KJ, Olson ML, Mannheim D, McConnell JP, et al. Early experimental obesity is associated with coronary endothelial dysfunction and oxidative stress. Am J Physiol Heart Circ Physiol 2007; 292(2): H904-11. http://dx.doi.org/10.1152/ajpheart.00628.2006

Kang KS, Yahashi S, Azuma M, Sakashita A, Shioda S, Matsuda K. Effect of Intraperitoneal Injection of Curcumin on Food Intake in a Goldfish Model. J Mol Neurosci 2011; 45(2): 172-6. http://dx.doi.org/10.1007/s12031-010-9390-5

Navarro A, Sanchez-Pino MJ, Gomez C, Bandez MJ, Cadenas E, Boveris A. Dietary thioproline decreases spontaneous food intake and increases survival and neurological function in mice. Antioxid Redox Signal 2007; 9(1): 131-41. http://dx.doi.org/10.1089/ars.2007.9.131

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 Wensheng Li, Eric Blough, Cuifen Wang, Larry Dial, Omolola Olajide, Randa Al-Jayoussi, Nesreen BenHamed , Miaozong Wu