Abstract
Stressful conditions possess a complex relationship with brain and body’s reaction to stress and beginning of depression. The hypofunctioning of Serotonin (5-Hydroxytryptamine; 5-HT) is known to be established in unpredictable chronic mild stress exposure. UCMS is broadly taken as the most promising and favorable model to study depression in various animals, imitating many human depressive symptoms. With the class of selective serotonin [5-hydroxytryptamine (5-HT)] reuptake inhibitors (SSRIs) is now considered as the most prescribed antidepressant that can reverse petrochemical and behavioral effects of stresses. The aim of the present study was to investigate whether repeated administration of dapoxetine at dose 1.0 mg/kg could reversed the behavioral deficits induced by UCMS in rat model of depression. Rats exposed to UCMS revealed a significant reduction in food intake as well as growth rate. Locomotive activity in home cage and anxiolytic behavior in light/dark activity box were greater in animals of unstressed group as compared to animals of stressed group. The mechanism involved in the inhibition of serotonin reuptake at pre-synaptic receptors by repeated dapoxetine administration is discussed. The knowledge accumulated may facilitate an innovative approach for extending the therapeutic use of dapoxetine and the interaction between stress and behavioral functions.
References
Chrousos GP. Stressors, stress and neuroendocrine integration of the adaptive response. The 1997 Hans Selye memorial lecture. Ann N Y Acad Sci 1998; 851: 311-35. http://dx.doi.org/10.1111/j.1749-6632.1998.tb09006.x
Ursine H, Eriksen HR. The cognitive activation theory of stress. Psychoneuroendocrinology 2004; 29(5): 567-92. http://dx.doi.org/10.1016/S0306-4530(03)00091-X
Katz RJ, Roth KA, Carroll BJ. Acute and chronic stress effects on open ?eld activity in the rat: implications for a model of depression. Neuro Sci Biobehav Rev 1981; 5: 247-51. http://dx.doi.org/10.1016/0149-7634(81)90005-1
Willner P. Animal models as simulations of depression. Trends Pharmacol Sci 1991; 12: 131-6. http://dx.doi.org/10.1016/0165-6147(91)90529-2
Hellstrom WJ. Emerging treatments for premature ejaculation: focus on dapoxetine. Neuropsychiatry Dis Treat 2009; 5: 37-46.
Gengo PJ, View M, Giuliani F, McKenna KE, Chester A, Laufenberg T, Gupta SK. Monoaminergic transporter binding and inhibition profile of dapoxetine, a medication for the treatment of premature ejaculation. Abstract 878 J Urol 2005; 173(4): 230-239.
Strassberg DS, de Gouveia Brazao CA, Rowland DL, Tan P, Slob AK. Clomipramine in the treatment of rapid (premature) ejaculation. J Sex Marital Ther 1999; 25(2): 89-101. http://dx.doi.org/10.1080/00926239908403982
Eli Lilly and Company. Prozac (fluoxetine hydrochloride) prescribing information. Indianapolis 2005: Ind [online
Fuchs E. Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectr 2005; 10: 182-190.
Porsolt RD. Animal models of depression: utility for transgenic research. Rev Neurosci 2000; 11: 53-58. http://dx.doi.org/10.1515/REVNEURO.2000.11.1.53
Willner P, Mitchell PJ. The validity of animal models of predi-sposition to depression. Behav Pharmacol 2002; 13: 169-188. http://dx.doi.org/10.1097/00008877-200205000-00001
D’Aquila P, Brain PF, Willner P. Effects of chronic mild stress on performance in behavioral tests relevant to anxiety and depression. Physiol Behav 1994; 56: 861-867. http://dx.doi.org/10.1016/0031-9384(94)90316-6
Willner P. Chronic mild stress (CMS) revisited: consistency and behavioral–neurobiological concordance in the effects of CMS. Neuropsychobiology 2005; 52: 90-110. http://dx.doi.org/10.1159/000087097
Muscat R, Willner P. Suppression of sucrose drinking by chronic mild unpredictable stress: a methodological analysis. Neuro Sci Biobehav Rev 1992; 16(4): 507-17. http://dx.doi.org/10.1016/S0149-7634(05)80192-7
Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA. Chronic Unpredictable Stress Induces a Cognitive Deficit and Anxiety-Like Behavior in Rats that is Prevented by Chronic Antidepressant Drug Treatment. Neuropsychopharmacology 2008; 33: 320-331. http://dx.doi.org/10.1038/sj.npp.1301410
Shireen E, Pervez S, Masroor M, Ali WB, Rais Q, Khalil S, Tariq A, Haleem DJ. Reversal of haloperidol induced motor deficits in rats exposed to repeated immobilization stress. Pak J Pharm Sci 2014; 27(5): 1459-66.
Hascoët M, Bourin M, Nic Dhonnchadha. The mouse light dark paradigm: a review Prog Neuropsycho pharmacol Biol Psychiatry 2001; 25(1): 141-66. http://dx.doi.org/10.1016/S0278-5846(00)00151-2
Neary NM, Goldstone AP, Bloom SR. Appetite regulation: from the gut to the hypothalamus. Clin Endocrinol 2004; 60: 153-160. http://dx.doi.org/10.1046/j.1365-2265.2003.01839.x
Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 1995; 374: 542-546. http://dx.doi.org/10.1038/374542a0
Michelson D, Amsterdam JD, Quitkin FM. Changes in weight during a 1-year trial of fluoxetine. Am J Psychiatry 1999; 156: 1170-1176.
Ganea K, Liebl C, Sterlemann V, Mller MB, Schmidt MV. Pharmacological validation of a novel home cage activity counter in mice. J Neurosci Methods 2007; 162: 180-186. http://dx.doi.org/10.1016/j.jneumeth.2007.01.008
Parks CL, Robinson PS, Sibille E, Shenk T, Toth M. Increased anxiety of mice lacking the serotonin1A receptor." Proc Natl Acad Sci USA 1998; 195(18): 10734-9. http://dx.doi.org/10.1073/pnas.95.18.10734
Kennett GA, Dourish CT, Curzon G. Antidepressant-like action of 5-HT1A agonists and conventional antidepressants in an animal model of depression. Eur J Pharmacol 1987; 134(3): 265-74. http://dx.doi.org/10.1016/0014-2999(87)90357-8
Chojnacka-Wójcik E, Klodzinska A, Tatarczynska E. The anxiolytic-like effect of 5-HT1B receptor ligands in rats: a possible mechanism of action". J Pharm Pharmacol 2005; 57(2): 253-7. http://dx.doi.org/10.1211/0022357055399
Lin D, Parsons LH. Anxiogenic-like effect of serotonin (1B) receptor stimulation in the rat elevated plus-maze. Pharmacol Biochem Behav 2002; 71(4): 581-7. http://dx.doi.org/10.1016/S0091-3057(01)00712-2
Tatarczynska E, Klodzinska A, Stachowicz K, Chojnacka-Wójcik E. Effects of a selective 5-HT1B receptor agonist and antagonists in animal models of anxiety and depression. Behav Pharmacol 2004; 15(8): 523-34. http://dx.doi.org/10.1097/00008877-200412000-00001
McCreary AC, Bankson MG, Cunningham KA. Pharmacological studies of the acute and chronic effects of (+)-3, 4-methylenedioxymethamphetamine on locomotors activity: role of 5-hydroxytryptamine (1A) and 5-hydroxytryptamine (1B/1D) receptors. J Pharmacol Exp Ther 1999; 290(3): 965-73.
Kennett GA, Wood MD, Bright F, Trail B, Riley G, Holland V, Avenell KY, et al. SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacology 1997; 36(4-5): 609-20. http://dx.doi.org/10.1016/S0028-3908(97)00038-5
Millan MJ, Brocco M, Gobert A, Dekeyne A. Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role of 5-HT2C receptor blockade. Psychopharmacology (Berl) 2005; 177(4): 448-58. http://dx.doi.org/10.1007/s00213-004-1962-z
Millan MJ, Brocco M, Gobert A, Dekeyne A. S32006, a novel 5-HT2C receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models. Psychopharmacology (Berl) 2008; 199(4): 549-68. http://dx.doi.org/10.1007/s00213-008-1177-9
Crawley JN, Goodwin FK. Preliminary report of a simple animal behaviour for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 1980; 13: 167-170. http://dx.doi.org/10.1016/0091-3057(80)90067-2
Belzung C, Misslin R, Vogel E, Dodd RH, Chapouthier G. Anxiogenic effects of methyl-h-carboline-carboxylate in a light/dark choice situation. Pharmacol Biochem Behav 1987; 28: 29-33. http://dx.doi.org/10.1016/0091-3057(87)90006-2
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2015 Muhammad Farhan, Hira Rafi , Hamna Rafiq