Lectin-Like Binding of Four Animal Lactobacilli Considered for their Use in Probiotical Preparations


 Lactobacillus, ECM proteins, extracellular matrix, collagen, fibronectin, albumin, vitronectin, lactoferrin, fetuin, mucin, probiotic use.

How to Cite

I. Štyriak, & I. Štyriaková. (2016). Lectin-Like Binding of Four Animal Lactobacilli Considered for their Use in Probiotical Preparations. Journal of Pharmacy and Nutrition Sciences, 6(2), 78–82. https://doi.org/10.6000/1927-5951.2016.06.02.6


Four gut lactobacilli (Lactobacillus plantarum L5, Lactobacillus paracasei L81, Lactobacillus fermentum L 670 and Lactobacillus casei subsp. pseudoplantarum L.c.) were examined by particle agglutination assay (PAA) for their lectin-like binding activity after their cultivation on Rogosa agar and in MRS broth. Seven ECM (extracellular matrix) molecules (bovine mucin, porcine mucin, bovine fibronectin, porcine fibronectin, fetuin, bovine lactoferrin and heparin) were selected for this assay. Moreover, haemagglutination tests with pig, cattle, sheep, and hen erythrocytes were performed. However, none of the four Lactobacillus strains examined did react with any of the erythrocytes tested. The differences between individual strains were observed in their binding to immobilised ECM molecules. The best adherent were the Lactobacillus plantarum L5 and Lactobacillus paracasei L81, however, the other two strains showed also good ECM binding of some ECM proteins. With regard to an influence of cultivation medium on lectin-like binding activity, binding of all ECM molecules was expressed in Lactobacillus paracasei L81 to significantly higher degree after cultivation on Rogosa agar than in MRS broth. Similarly, strains Lactobacillus fermentum L670 and Lactobacillus casei subsp. pseudoplantarum L.c. displayed significantly higher binding of fibronectin and mucin after growth on Rogosa agar in comparison with MRS broth cultivation. The influence of cultivation medium on fetuin binding by Lactobacillus fermentum L670 was also not significant while Lactobacillus casei subsp. pseudoplantarumL.c. bound fetuin significantly better after growth on Rogosa agar.
Heparin pretreatment increased the binding of the ECM molecules by the Lactobacillus fermentum L 670 strain significantly with the exception of porcine fibronectin when the strain was cultivated in MRS broth. Similar positive effect of heparin was observed also in the other three lactobacilli. This result is important especially in the connection with the observations that heparin decreased ECM binding of enteropathogens as staphylococci or clinical enterococcal isolates. Following up on some earlier strain characteristics, these results confirm that the selected lactobacilli are suitable for probiotic purposes.



Wadström T, Ljungh A. Glycosaminoglycan-binding microbial proteins in tissue adhesion and invasion: key events in microbial pathogenicity. J Med Microbiol 1999; 48: 223-233. http://dx.doi.org/10.1099/00222615-48-3-223

Ljungh A, Wadström T. Binding of extracellular matrix proteins by microbes. Methods Enzymol 1995; 253: 501-514. http://dx.doi.org/10.1016/S0076-6879(95)53041-X

Salminen S, Isolauri E, Salminen E. Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie Leeuwenhoek 1996; 70: 347-358. http://dx.doi.org/10.1007/BF00395941

Reid G. The scientific basis for probiotic strains of Lactobacillus. Appl Environ Microbiol 1999; 65: 3763-3766.

Nemcová R, Bomba A, Herich R, Gancar?iková S. Colonization capability of orally administered Lactobacillus strains in the gut of gnotobiotic piglets. Dtsch tierärztl Wschr 1998; 105: 199-200.

Alvarez-Olmos MI, Oberhelman RA. Probiotic agents and infectious diseases: a modern perspective on a traditional therapy. Clin Infect Dis 2001; 32: 1567-1576. http://dx.doi.org/10.1086/320518

Kimura K, McCartney AL, McConnell MA, Tannock GW. Analysis of fecal populations of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to the predominant strains. Appl Environ Microbiol 1997; 63: 3394-3398.

Vitini E, Alvarez S, Medina M, Medici M, de Budeguer MV, Perdigon G. Gut mucosal immunostimulation by lactic acid bacteria. Biocell 2000; 24: 223-232.

Fuller R, Gibson GR. Modification of the intestinal microflora using probiotics and prebiotics. Scand J Gastroenterol 1997; 222: 28-31.

Parodi PW. The role of intestinal bacteria in the causation and prevention of cancer: modulation by diet and probiotics. Austral J Dairy Technol 1999; 54: 103-121.

Tannock GW. Microbial interference in the gastrointestinal tract. ASEAN J Clin Sci 1981; 2: 2-34.

Lee YK, Salminen S. The coming of age of probiotics. Trends Food Sci Technol 1995; 6: 241-245. http://dx.doi.org/10.1016/S0924-2244(00)89085-8

Brassart D, Schiffrin EJ. Probiotics for improved gut health. Trends Food Sci Technol 1997; 8: 321-326. http://dx.doi.org/10.1016/S0924-2244(97)01071-6

Kapczynski, DR, Meinersmann RJ, Lee MD. Adherence of Lactobacillus to intestinal 407 cells in culture correlates with fibronectin binding. Curr Microbiol 2000; 41: 136-141. http://dx.doi.org/10.1007/s002840010107

Westerlund B, Korhonen TK. Bacterial proteins binding to the mammalian extracellular matrix. Mol Microbiol 1993; 9(4): 687-94.

Aleljung P, Paulsson M, Emödy L, Andersson M, Naidu AS, Wadström T. Collagen binding by lactobacilli. Curr Microbiol 1991; 23: 33-38. http://dx.doi.org/10.1007/BF02092306

Aleljung P, Shen W, Rozalska B, Hellmann U, Ljungh A, Wadström T. Purification of collagen-binding proteins of Lactobacillus reuteri NCIB 11951. Curr Microbiol 1994; 28: 231-236. http://dx.doi.org/10.1007/BF01575966

Toba T, Virkola, R, Westerlund B, Bjorkman Y, Sillanpaa J, Vartio T, Kalkkinen N, Korhonen TK. A collagen-binding S-layer protein in Lactobacillus crispatus. Appl Environ Microbiol 1995; 61: 2467-2471.

Štyriak I, Deme?ková V, Nemcová R. Collagen (Cn-I) binding by gut lactobacilli. Berl Münch Tierärztl Wschr 1999a; 112: 301-304.

Lorca G, Torino MI, deValdez GF, Ljungh A. Lactobacilli express cell surface proteins which mediate binding of immobilised collagen and fibronectin. FEMS Microbiol Lett 2002; 206: 31-37. http://dx.doi.org/10.1111/j.1574-6968.2002.tb10982.x

Vaughan EE, Mollet B, deVos WM. Functionality of probiotics and intestinal lactobacilli: light in the intestinal tract tunnel. Curr Opin Biotechnol 1999; 10: 505-510. http://dx.doi.org/10.1016/S0958-1669(99)00018-X

Tannock GW. Lactobacillus succession in the piglet digestive tract demonstrated by plasmid profiling. Appl Environ Microbiol 1990; 56: 1310-1316.

Bomba A, Kaštel R, Gancar?iková S, Nemcová R, Herich R, ?ížek M. The effect of lactobacilli inoculation on organic acid levels in the mucosal film and small intestine contents in gnotobiotic pigs. Berl Münch Tierärztl Wschr 1996; 109: 428-430.

Ocana VS, deRuizHolgado AAP, Nader-Macias ME. Selection of vaginal H2O2-generating Lactobacillus species. Curr Microbiol 1999; 38: 279-284. http://dx.doi.org/10.1007/PL00006802

Nemcová R, Lauková A, Gancar?iková, S, Kaštel R. In vitro studies of porcine lactobacilli for possible probiotic use. Berl Münch Tierärztl Wschr 1997; 110: 413-417.

Carvalho MGS, Teixeira LM. Hemagglutination properties of Enterococcus. Curr Microbiol 1995; 30: 265-268. http://dx.doi.org/10.1007/BF00295499

Mukai T, Kaneko S, Ohori H. Haemagglutination and glycolipid-binding activities of Lactobacillus reuteri. Lett Appl Microbiol 1998; 27: 130-134. http://dx.doi.org/10.1046/j.1472-765X.1998.00418.x

Adlerberth I, Ahrne S, Johansson ML, Molin G, Hanson L, Wold A.E. A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl Environ Microbiol 1996; 62: 2244-2251.

Naidu AS, Paulsson M, Wadström T. Particle agglutination assays for rapid detection of fibronectin, fibrinogen, and collagen receptors on Staphylococcus aureus. J Clin Microbiol 1988; 26: 1549-1554.

Štyriak I, Lauková A, Fallgren C, Wadström T. Binding of selected extracellular matrix proteins to enterococci and Streptococcus bovis of animal origin. Curr Microbiol 1999b; 39: 327-335. http://dx.doi.org/10.1007/s002849900467

Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol 1996; 4: 430-435. http://dx.doi.org/10.1016/0966-842X(96)10057-3

Neeser JR, Granato D, Rouvet M, Servin A, Teneberg S, Karlsson KA. Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology 2000; 10: 1193-1199. http://dx.doi.org/10.1093/glycob/10.11.1193

Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA. Probiotics inhibit enteropathogenic E.coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 1999; 276: G941-950.

Jonsson H, Ström E, Roos S. Addition of mucin to the growth medium triggers mucus-binding activity in different strains of Lactobacillus reuteri in vitro. FEMS Microbiol Lett 2001; 204: 19-22. http://dx.doi.org/10.1111/j.1574-6968.2001.tb10855.x

Roussel P, Lamblin G, Lhermitte M, Houdret N, Lafitte JJ, Perini JM, Klein A, Scharfman A. The complexity of mucins. Biochimie 1988; 70: 1471-1482. http://dx.doi.org/10.1016/0300-9084(88)90284-2

Lindahl U, Lidholt K, Spillmann D, Kjellén L. More to “heparin” than anticoagulation. Thromb Res 1994; 75: 1-32. http://dx.doi.org/10.1016/0049-3848(94)90136-8

Cheung AL, Fishetti VA. Variation in the expression of cell wall proteins of Staphylococcus aureus grown on solid and liquid media. Infect Immun 1988; 56: 1061-1065.

Spencer RJ, Chesson A. The effect of Lactobacillus spp. on the attachment of enterotoxigenic Escherichia coli to isolated porcine enterocytes. J Appl Bacteriol 1994; 77: 215-220. http://dx.doi.org/10.1111/j.1365-2672.1994.tb03066.x

Štyriak I, Žatkovi? B, Maršalková S. Binding of extracellular matrix proteins by lactobacilli. Folia Microbiol 2001; 46: 83-85. http://dx.doi.org/10.1007/BF02825894

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 I. Štyriak , I. Štyriaková