Biomedical Application of Carbon Nanotubes for Proteins Extraction and Seperation

Authors

  • Hartmut Schlüter University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
  • Mohammadreza Saboktakin Nanostructured Materials Synthesis Lab., NanoBMat Company, GmbH, Hamburg, Germany

DOI:

https://doi.org/10.6000/1927-5951.2016.06.04.2

Keywords:

 Nanotubes, Proteins, Extraction, Seperation, biomedical application.

Abstract

Measurement science and technology continue to play vital roles in biomedical research and in routine healthcare. Over recent decades there has been a steady evolution of sensors for biomedical measurement aimed at clinical care in hospitals, fundamental biomedical research in the laboratory, or even self-care in the home. The measurements of interest are diverse, ranging from pressure, force, flow and displacement to electrical field/charge, magnetic flux, and molecular species, such as gases, ions, proteins, bacteria, viruses, and DNA. In this review, we have studied several biomedical applications of nanotubes and nanowires for proteins measurements in cells. Also, These materials have a wide application as protein carriers and transporters. The wide applications of multi-walled carbon nanotubes (MWCNT) on the serious concerns about their safety on human health and environment have been studied.

References

Iijima S. Helical Microtubules of Graphitic Carbon. Nature 1991; 354(6348): 56-58. https://doi.org/10.1038/354056a0

Ouyang M, Huang JL, Lieber CM. One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering. Phys Rev Lett 2002; 88(6): 066804. https://doi.org/10.1103/PhysRevLett.88.066804

Zare K, Najafi F, Sadegh H. Studies of ab initio and Monte Carlo simulation on interaction of fluorouracil anticancer drug with carbon nanotube. J Nanostruc Chem 2013; 3(1): 1-8. https://doi.org/10.1186/2193-8865-3-71

hostenson ET, Ren ZF, Chou TW. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 2001; 61(13): 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X

Troiani HE, Miki-Yoshida M, Camacho-Bragado GA, Marques MAL, Rubio A, Ascencio JA, Jose-Yacaman M. Direct observation of the mechanical properties of single-walled carbon nanotubes and their junctions at the atomic level. Nano Lett 2003; 3(6): 751-755. https://doi.org/10.1021/nl0341640

Wan XG, Dong JM, Xing DY. Optical properties of carbon nanotubes. Phys Rev B 1998; 58(11): 6756-6759. https://doi.org/10.1103/PhysRevB.58.6756

Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J. A Bianco, Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2007; 2(2): 108-113. https://doi.org/10.1038/nnano.2006.209

Sadegh H, Shahryari-ghoshekandi R, Kazemi M. Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles. Int Nano Lett 2014; 4(4): 129-135. https://doi.org/10.1007/s40089-014-0128-1

Sadegh H, Shahryari-ghoshekandi R, Agarwal S, Tyagi I, Asif M, Gupta VK. Microwave-assisted removal of malachite green by carboxylate functionalized multi-walled carbon nanotubes: Kinetics and equilibrium study. J Mol Liq 2015; 206: 151-158. https://doi.org/10.1016/j.molliq.2015.02.007

Ando Y. Carbon nanotube: the inside story. J Nanosci Nanotechnol 2010; 10(6): 3726-3738. https://doi.org/10.1166/jnn.2010.2017

Cheng MMC, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin A, Nijdam AJ, Terracciano R, Thundat T, Ferrari M, Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 2011; 10: 11-19. https://doi.org/10.1016/j.cbpa.2006.01.006

Hällström W, Mårtensson T, Prinz C, Gustavsson P, Montelius L, Samuelson L, Kanje M. Gallium phosphide nanowires as a substrate for cultured neurons. Nano Lett 2007; 7: 2960-2965. https://doi.org/10.1021/nl070728e

Valentin N. Popov. Mat Sci and Engg R 2004; 43: 61. https://doi.org/10.1016/j.mser.2003.10.001

Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. C60: Buckminsterfullerene. Nature 1985; 318(14): 162-163. https://doi.org/10.1038/318162a0

Iijima S. Nature (London) 1991; 354: 56. https://doi.org/10.1038/354056a0

Odom TW, Huang J-L, Kim P, Lieber CM. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998; 391: 62-64. https://doi.org/10.1038/34145

Ganesh EN. Single Walled and Multi Walled Carbon Nanotube Structure, Synthesis and Applications. International Journal of Innovative Technology and Exploring Engineering (IJITEE) 2013; 2(4): ISSN: 2278-3075.

Hirlekar R, Yamagar M, Garse H, Vij M, Kadam V. Carbon Nanotubes and Its Applications: A Review. Asian Journal of Pharmaceutical and Clinical Research 2009; 2(4).

Shi Q, Yu Z, Liu Y, Gong H, Yin H, Zhang W, Liu J, Peng Y. Plasmonics properties of nano-torus: An FEM method. Optics Communications 2012; 285(21-22): 4542-4548. https://doi.org/10.1016/j.optcom.2012.06.032

Wu X, Zeng XC. Periodic Graphene Nanobuds. Nano Lett 2008.

Harris PJF, Tsang SC, Claridge JB, Green MLH. High resolution electron microscopy studied of a microporous carbon produced by arc evaporation. J Chem Soc Faraday Trans 1994; 90: 2799-802. https://doi.org/10.1039/ft9949002799

Zhu S, Xu G. Single-walled carbon nanohorns and their applications. Nanoscale 2010; 2: 2538-2549. https://doi.org/10.1039/c0nr00387e

Öberg PÅ, Togawa T, Spelman FA. Sensors in Medicine and Health Care. Wiley-VCH, Weinheim 2004.

Courville J, Walsh J, Cordeau JP. Functional organization of the brain stem reticular formation and sensory input. Science 1962; 138: 973-5. https://doi.org/10.1126/science.138.3544.973

Rolfe P. Sensors and Systems that Mimic Nature. Eng Sci and Education J 1990; 6(4): 155-166. https://doi.org/10.1049/esej:19970403

Müller R, Kuc R. Biosonar-inspired technology: goals, challenges and insights. Bioinspir Biomim 2007; 2(4): 146-61. https://doi.org/10.1088/1748-3182/2/4/S04

Cooper MA. Optical biosensors in drug discovery. Nat Rev Drug Discov 2007; 1(7): 515-28. https://doi.org/10.1038/nrd838

Voros J, Ramsden JJ, Csucs G, Szendro I, De Paul SM, Textor M, et al. Optical grating coupler biosensors. Biomaterials 2002; 23(17): 3699-710. https://doi.org/10.1016/S0142-9612(02)00103-5

Wang J. Electrochemical nucleic acid biosensors. Anal Chim Acta 2002; 469(1): 63-71. https://doi.org/10.1016/S0003-2670(01)01399-X

Janshoff A, Galla HJ, Steinem C. Piezoelectric mass-sensing devices as biosensors - an alternative to optical biosensors? Angew Chem Int Ed 2000; 39(22): 4004-32. https://doi.org/10.1002/1521-3773(20001117)39:22<4004::AID-ANIE4004>3.0.CO;2-2

Li T, Liu DJ, Wang ZX. Microarray-based Raman spectroscopic assay for kinase inhibition by gold nanoparticle probes. Biosens Bioelectron 2002; 24(11): 3335-9. https://doi.org/10.1016/j.bios.2009.04.033

Hucknall A, Kim DH, Rangarajan S, Hill RT, Reichert WM, Chilkoti A. Simple fabrication of antibody microarrays on nonfouling polymer brushes with femtomolar sensitivity for protein analytes in serum and blood. Adv Mater 2009; 21(19): 1968-71. https://doi.org/10.1002/adma.200803125

Lei CX, Hu SQ, Gao N, Shen GL, Yu RQ. An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode. Bioelectrochemistry 2004; 65(1): 33-9. https://doi.org/10.1016/j.bioelechem.2004.06.002

Liu ZM, Yang Y, Wang H, Liu YL, Shen GL, Yu RQ. A hydrogen peroxide biosensor based on nano-Au/PAMAM dendrimer/cystamine modified gold electrode. Sens Actuators B: Chem 2005; 106(1): 394-400. https://doi.org/10.1016/j.snb.2004.08.023

Cui Y, Wei QQ, Park HK, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001; 293(5533): 1289-92. https://doi.org/10.1126/science.1062711

Hahm J, Lieber CM. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 2004; 4(1): 51-4. https://doi.org/10.1021/nl034853b

Li Z, Chen Y, Li X, Kamins TI, Nauka K, Williams RS. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 2004; 4(2): 245-7. https://doi.org/10.1021/nl034958e

Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li YM, et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci USA 2003; 100(9): 4984-9. https://doi.org/10.1073/pnas.0837064100

Li J, Ng HT, Cassell A, Fan W, Chen H, Ye Q, et al. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 2003; 3(5): 597-602. https://doi.org/10.1021/nl0340677

Wang J. Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 2005; 17(1): 7-14. https://doi.org/10.1002/elan.200403113

Abe M, Murata K, Kojima A, Ifuku Y, Shimizu M, Ataka T, et al. Quantitative detection of protein using a top-gate carbon nanotube field effect transistor. J Phys Chem C 2007; 111(24): 8667-70. https://doi.org/10.1021/jp071420e

Allen BL, Kichambare PD, Star A. Carbon nanotube field effect- transistor-based biosensors. Adv Mater 2007; 19(11): 1439-51. https://doi.org/10.1002/adma.200602043

Avouris P. Molecular electronics with carbon nanotubes. Acc Chem Res 2002; 35(12): 1026-34. https://doi.org/10.1021/ar010152e

Kim JP, Lee BY, Hong S, Sim SJ. Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Anal Biochem 2008; 381(2): 193-8. https://doi.org/10.1016/j.ab.2008.06.040

Kim JP, Lee BY, Lee J, Hong S, Sim SJ. Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosens Bioelectron 2009; 24(11): 3372-8. https://doi.org/10.1016/j.bios.2009.04.048

Li C, Curreli M, Lin H, Lei B, Ishikawa FN, Datar R, et al. Complementary detection of prostate-specific antigen using ln(2)O(3) nanowires and carbon nanotubes. J Am Chem Soc 2005; 127(36): 12484-5. https://doi.org/10.1021/ja053761g

Star A, Gabriel JCP, Bradley K, Gruner G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett 2003; 3(4): 459-63. https://doi.org/10.1021/nl0340172

Martinez MT, Tseng YC, Ormategui N, Loinaz I, Eritja R, Bokor J. Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett 2009; 9(2): 530-6. https://doi.org/10.1021/nl8025604

Dong XC, Lau CM, Lohani A, Mhaisalkar SG, Kasim J, Shen ZX, et al. Electrical detection of femtomolar DNA via gold-nanoparticle enhancement in carbon-nanotube network field-effect transistors. Adv Mater 2008; 20(12): 2389-93. https://doi.org/10.1002/adma.200702798

Star A, Tu E, Niemann J, Gabriel JCP, Joiner CS, Valcke C. Labelfree detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci USA 2006; 103(4): 921-6. https://doi.org/10.1073/pnas.0504146103

Gui EL, Li LJ, Lee PS, Lohani A, Mhaisalkar SG, Cao Q, et al. Electrical detection of hybridization and threading intercalation of deoxyribonucleic acid using carbon nanotube network field-effect transistors. Appl Phys Lett 2006; 89(23): 232104-6. https://doi.org/10.1063/1.2399355

Chen ZH, Appenzeller J, Knoch J, Lin YM, Avouris P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett 2005; 5(7): 1497-502. https://doi.org/10.1021/nl0508624

Zhang J, Song SP, Zhang LY, Wang LH, Wu HP, Pan D, et al. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc 2006; 128(26): 8575-80. https://doi.org/10.1021/ja061521a

Hennrich F, et al. Preparation, characterization, and applications of free-standing single walled carbon nanotube thin films. Phys Chem Chem Phys 2002; 4: 2273. https://doi.org/10.1039/b201570f

Chiang IW, et al. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J Phys Chem B 2001; 105: 8297. https://doi.org/10.1021/jp0114891

Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 1996; 76: 2511. https://doi.org/10.1103/PhysRevLett.76.2511

Walters DA, et al. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl Phys Lett 1999; 74: 3803. https://doi.org/10.1063/1.124185

Yu MF, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 2000; 84: 5552. https://doi.org/10.1103/PhysRevLett.84.5552

Cooper CA, Young RJ, Halsall M. Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites A Appl Sci Mfg 2001; 32: 401. https://doi.org/10.1016/S1359-835X(00)00107-X

Barraza HJ, et al. SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization. Nano Lett 2002; 2: 797. https://doi.org/10.1021/nl0256208

Qian D, et al. Load transfer and deformation mechanisms in carbon nanotube- polystyrene composites. Appl Phys Lett 2000; 76: 2868. https://doi.org/10.1063/1.126500

Wagner HD, et al. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl Phys Lett 1998; 72: 188. https://doi.org/10.1063/1.120680

Schadler LS, Giannaris SC, Ajayan PM. Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 1998; 73: 3842. https://doi.org/10.1063/1.122911

Cooper CA, Young RJ. Investigation of structure/property relationships in particulate composites through the use of Raman spectroscopy. J Raman Spectrosc 1999; 30: 929. https://doi.org/10.1002/(SICI)1097-4555(199910)30:10<929::AID-JRS462>3.0.CO;2-7

Ju L, Zhang G, Zhang X, et al. Proteomic Analysis of Cellular Response Induced by Multi-Walled Carbon Nanotubes Exposure in A549 Cells. PLOS ONE 2004; 9(1): 1-15.

Sabrina F, Oliveira A, Bisker G, Naveed A, et al. Protein functionalized carbon nanomaterials for biomedical applications. Carbon 2015; 95: 767-779. https://doi.org/10.1016/j.carbon.2015.08.076

Giraldo JP, et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 2014; 13(4): 400e408.

Vashist SK, et al. Delivery of drugs and biomolecules using carbon nanotubes. Carbon 2011; 49(13): 4077e4097.

Giraldo JP, et al. A Ratiometric sensor using single chirality near-infrared fluorescent carbon nanotubes: application to in vivo monitoring. Small 2015; 11(32): 3973e3984.

Kam NWS, Dai HJ. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 2005; 127(16): 6021e6026.

Kam NWS, et al. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 2004; 126(22): 6850e6851.

Vardharajula S, et al. Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine 2012; 7: 5361e5374.

Cheung W, et al. DNA and carbon nanotubes as medicine. Adv Drug Deliv Rev 2010; 62(6): 633e649.

Kam NWS, Liu ZA, Dai HJ. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chemie Int Ed 2006; 45(4): 577e581.

Holt BD, Dahl KN, Islam MF. Cells take up and recover from protein stabilized single-wall carbon nanotubes with two distinct rates. ACS Nano 2012; 6(4): 3481e3490.

Marchetti M, et al., Adsorption of surfactant protein D from human respiratory secretions by carbon nanotubes and polystyrene nanoparticles depends on nanomaterial surface modification and size. Philos Trans R Soc Lond B Biol Sci 2015; 370(1661): 20140038. https://doi.org/10.1098/rstb.2014.0038

Sanz V, et al. Modeling the binding of peptides on carbon nanotubes and their use as protein and DNA carriers. J. Nanoparticle Res 2012; 14(2). https://doi.org/10.1007/s11051-011-0695-2

Dumortier H, et al. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 2006; 6: 1522, 2006; 6(12): 3003e3003.

Ge CC, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA 2011; 108(41): 16968e16973.

Sacchetti C, et al. Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano 2013; 7(3): 1974e1989.

Liu Z, et al. In vivo bio distribution and highly efficient tumor targeting of carbon nanotubes in mice. Nat Nanotechnol 2007; 2(1): 47e52.

Johnson RR, Johnson ATC, Klein ML. Probing the structure of DNA- carbon nanotube hybrids with molecular dynamics. Nano Lett 2008; 8(1): 69e75.

Marchesan S, et al. The winding road for carbon nanotubes in nanomedicine. Mater Today 2015; 18(1). https://doi.org/10.1016/j.mattod.2014.07.009

Poland CA, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 2008; 3(7): 423e428.

Ali-Boucetta H, et al., Asbestos-like Pathogenicity of Long Carbon anotubes Alleviated by Chemical Functionalization. Angew Chemie Int Ed 2013; 52(8): 2274e2278.

Kruss S, Andrew J, et al. Carbon nanotubes as optical biomedical sensors. Advanced Drug Delivery Reviews 2013; 1-18. https://doi.org/10.1016/j.addr.2013.07.015

Liu SJ. Epigenetics advancing personalized nanomedicine in cancer therapy. Adv Drug Deliver Rev 2012; 64(13): 1532-1543. https://doi.org/10.1016/j.addr.2012.08.004

Schork NJ, Fallin D, Lanchbury JS. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet 2000; 58(4): 250-264. https://doi.org/10.1034/j.1399-0004.2000.580402.x

Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 1998; 280(5366): 1077-1082. https://doi.org/10.1126/science.280.5366.1077

Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Witonsky J, Zacharia LF, Kennedy K, Jamieson R, Stewart J, Consortium IH. A haplotype map of the human genome. Nature 2005; 437(7063): 1299-1320. https://doi.org/10.1038/nature04226

Jeng ES, Moll AE, Roy AC, Gastala JB, Strano MS. Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Lett 2006; 6(3): 371-375. https://doi.org/10.1021/nl051829k

Jeng ES, Barone PW, Nelson JD, Strano MS. Hybridization kinetics and thermodynamics of DNA adsorbed to individually dispersed single-walled carbon nanotubes. Small 2007; 3(9): 1602-1609. https://doi.org/10.1002/smll.200700141

Dharuman V, Nebling E, Grunwald T, Albers J, Blohm L, Elsholz B, Worl R, Hintsche R. DNA hybridization detection on electrical microarrays using coulostatic pulse technique; Biosens Bioelectron 2006; 22(5): 744-751. https://doi.org/10.1016/j.bios.2006.02.014

Tjong V, Yu H, Hucknall A, Rangarajan S, Chilkoti A. Amplified on-chip fluorescence detection of DNA hybridization by surface-initiated enzymatic polymerization Anal Chem 2011; 83(13): 5153-5159. https://doi.org/10.1021/ac200946t

Jeng ES, Nelson JD, Prather KLJ, Strano MS. Detection of a single nucleotide polymorphism using single-walled carbon-nanotube near-infrared fluorescence. Small 2010; 6(1): 40-43. https://doi.org/10.1002/smll.200900944

Lin YW, Ho HT, Huang CC, Chang HT. Fluorescence detection of single nucleotide polymorphisms using a universalmolecular beacon. Nucleic Acids Res 2008; 36(19): e123. https://doi.org/10.1093/nar/gkn537

Zhu Z, Yang R, You M, Zhang X, Wu Y, Tan W. Single-walled carbon nanotube as an effective quencher. Anal Bioanal Chem 2010; 396(1): 73-83. https://doi.org/10.1007/s00216-009-3192-z

Shim M, Wong N, Shi K, Chen RJ, et al. Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition 2002; 2(4): 285-288.

Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Science 1998; 281: 2013-2016. https://doi.org/10.1126/science.281.5385.2013

Chan W, Nie S. Science 1998; 281: 2016-2018. https://doi.org/10.1126/science.281.5385.2016

Taton T, Mirkin C, Letsinger R. Science 2000; 289: 1757-1760. https://doi.org/10.1126/science.289.5485.1757

Cui Y, Wei Q, Park H, Lieber C. Science 2001; 293: 1289-1292. https://doi.org/10.1126/science.1062711

Chen R, Zhang Y, Wang D, Dai H. J Am Chem Soc 2001; 123: 123.

Erlanger BF, Chen B, Zhu M, Brus LE. Nano Lett 2001; 1: 465. https://doi.org/10.1021/nl015570r

Kumar AM, Jung S, Ji T. Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods. Sensors 2011; 11: 5087-5111. https://doi.org/10.3390/s110505087

Bodilovska DS. Clinical Applications of Biosensors Based on Field-Effect Transistors with Carbon Nanotubes or Nanowires. ?????????????? ??????? ? ??????? 2013; 2: 53-58.

Chen RJ, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 2001; 123: 3838-3839. https://doi.org/10.1021/ja010172b

Kam NWS, O’Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. PNAS 2001; 102: 11600-11605. https://doi.org/10.1073/pnas.0502680102

Teker K, Sivakumar K, Wickstrom E, Panchapakesan B. ‘Functionalization of carbon nanotubes with antibodies for breast cancer detection applications’, Proceed. Int’l. Conf. on MEMS, NANO, and Smart Systems, 2001; pp. 48-53.

Noy A, De Yoreo JJ, Malkin AJ. Carbon Nanotube Atomic Force Microscopy for Proteomics and Biological Forensics 2002.

Chen RJ, Bangsaruntip S, Drouvalakis KA, Shi Kam NW, Shim M, Li Y, Kim W, Utz PJ, Dai H. Proc Natl Acad Sci USA 2003; 100: 4984. https://doi.org/10.1073/pnas.0837064100

(a) Patolsky F, Lieber CM. Mater Today 2004; 8: 20. https://doi.org/10.1016/S1369-7021(05)00791-1 (b) Bunimovich YL, Ge G, Beverly KC, Ries RS, Hood L, Heath JR. Langmuir 2004; 20: 10630. https://doi.org/10.1021/la047913h

Li C, Curreli M, Lin H, Lei B. Complementary Detection of Prostate- specific Antigen Using In2O3 Nanowires and Carbon Nanotubes. J Am Chem Soc 2005; 127: 12484-12485. https://doi.org/10.1021/ja053761g

Curreli M, Li C, Sun, Lei B, Gundersen MA, Thompson ME, Zhou CJ. Am Chem Soc 2005; 127: 6922. https://doi.org/10.1021/ja0503478

Li X, Zhang YP, Kim HS, Bae KH, Stantz KM, Lee SJ, Jung C, Jimenez JA, Gardner TA, Jeng MH, Kao C. Cancer Res 2005; 65: 1941. https://doi.org/10.1158/0008-5472.CAN-04-3666

Dharani D, Breznan D, Vincent R, Kumarathasan P. Toxicity evaluation of carbon nanotubes in J774 mouse macrophages utilizing a proteomic approach. J Proteomics Bioinform 2014; 7(8): 81-90.

Salvador-Morales C, Flahaut E, Sim E, Sloan J, Green MLH, Sim RB. Complement activation and protein adsorption by carbon nanotubes. Molecular Immunology 2006; 43: 193-201. https://doi.org/10.1016/j.molimm.2005.02.006

Pan C, Xu S, Zou H, Guo Z, Zhang Y, Guo B. Carbon Nanotubes as Adsorbent of Solid-Phase Extraction and Matrix for Laser Desorption/Ionization Mass Spectrometry. J Am Soc Mass Spectrom 2005; 16: 263-270. https://doi.org/10.1016/j.jasms.2004.11.005

Sanz V, Borowiak E, Lukanov P, Marie Galibert A, Flahaut E, Coley HM, Ravi S, Silva P, McFadden J. Optimising DNA binding to carbon nanotubes by non-covalent methods. Original text.

Spieteluna A, Marcinkowskia ?, de la Guardiab M, Namie´snik J. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. Journal of Chromatography A 2013; 1321: 1-13. https://doi.org/10.1016/j.chroma.2013.10.030

Downloads

Published

2016-08-05

How to Cite

Hartmut Schlüter, & Mohammadreza Saboktakin. (2016). Biomedical Application of Carbon Nanotubes for Proteins Extraction and Seperation. Journal of Pharmacy and Nutrition Sciences, 6(4), 126–143. https://doi.org/10.6000/1927-5951.2016.06.04.2

Issue

Section

Articles