Abstract
Contrast-induced nephropathy (CIN) remains as a problem of radiographic procedures with high incidence and mortality rates. This study aims to histologically assess the ability of Iohexol to induce nephropathy in rats injected with Glycerol; then investigate the Pioglitazone renoprotective effect on this CIN model in rats. 35 male Albino Wistar rats were randomly divided into 5 groups (n=7/group): healthy (A), Glycerol (B), Glycerol+ Iohexol (C), Glycerol + Iohexol + Pioglitazone (D), Pioglitazone alone (E). Groups (B), (C), and (D) were intramuscularly injected with Glycerol 25% (10 ml/kg). Iohexol (350 mg I/ml, 8,6 ml/kg) was injected through a caudal vein in groups (C) and (D). Pioglitazone (10 mg/kg) was orally administered for 4 days, to groups (D) and (E). Rats were sacrificed on the fifth day. Kidney samples were collected for histological assessment. The results show that the histopathological scores and kidney weight / body weight ratio in group (C), were significantly increased compared with group (B) and (A). These changes were significantly reversed in rats treated with Pioglitazone (group D).
In conclusion, Iohexol could cause renal injury in rat kidneys previously damaged by Glycerol. Pioglitazone was able to protect the kidneys from histological alterations.
References
Chang C-F, Lin C-C. Current concepts of contrast-induced nephropathy: a brief review. J Chin Med Assoc 2013; 76: 673-81. https://doi.org/10.1016/j.jcma.2013.08.011
Tao SM, Wichmann JL, Schoepf UJ, Fuller SR, Lu GM, Zhang LJ. Contrast-induced nephropathy in CT: incidence, risk factors and strategies for prevention. Eur Radiol 2016; 26: 3310-18. https://doi.org/10.1007/s00330-015-4155-8
Peng M, Jiang X-J, Dong H, Zou Y-B, Song L, Zhang H-M, et al. A Comparison of nephrotoxicity of contrast medium in elderly patients who underwent renal or peripheral arterial vascular intervention. Intern Med 2016; 55: 9-14. https://doi.org/10.2169/internalmedicine.55.5321
Davenport MS, Khalatbari S, Cohan RH, Dillman JR, Myles JD, Ellis JH. Contrast material–induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate. Radiology 2013; 268: 719-28. https://doi.org/10.1148/radiol.13122276
Bucher AM, De Cecco CN, Schoepf UJ, Meinel FG, Krazinski AW, Spearman JV, McQuiston AD, Wang R, Bucher J, Vogl TJ, et al. Is contrast medium osmolality a causal factor for contrast-induced nephropathy? Biomed Res Int 2014; 2014: 931413.
Lameire NH. Contrast-induced nephropathy--prevention and risk reduction. Nephrol Dial Transplant 2006; 21: 11-23. https://doi.org/10.1093/ndt/gfl215
Gleeson TG, Bulugahapitiya S. Contrast-induced nephropathy. AJR Am J Roentgenol 2004; 183: 1673-89. https://doi.org/10.2214/ajr.183.6.01831673
Michael A, Faga T, Pisani A, Riccio E, Bramanti P, Sabbatini M, Navarra M, Andreucci M. Molecular mechanisms of renal cellular nephrotoxicity due to radiocontrast media. Biomed Res Int 2014; 2014: 249810. https://doi.org/10.1155/2014/249810
Andreucci M, Faga T, Pisani A, Sabbatini M, Russo D, Michael A. Prevention of Contrast-Induced Nephropathy through a knowledge of its pathogenesis and risk factors. Scientific World Journal 2014; 2014: 823169. https://doi.org/10.1155/2014/823169
Pisani A, Riccio E, Andreucci M, Faga T, Ashour M, Di Nuzzi A, Mancini A, Sabbatini M. Role of reactive oxygen species in pathogenesis of radiocontrast-induced nephropathy. Biomed Res Int 2013; 2013: 868321. https://doi.org/10.1155/2013/868321
Subramaniam RM, Suarez-Cuervo C, Wilson RF, Turban S, Zhang A, Sherrod C, Aboagye J, Eng J, Choi MJ, Hutfless S, et al. Effectiveness of Prevention Strategies for Contrast-Induced Nephropathy. Ann Intern Med 2016; 164: 406-16. https://doi.org/10.7326/M15-1456
Quintavalle C, Donnarumma E, Fiore D, Briguori C, Condorelli G. Therapeutic strategies to prevent contrast-induced acute kidney injury. Curr Opin Cardiol 2013; 28: 676-82. https://doi.org/10.1097/HCO.0b013e3283653f41
Sarafidis P, Bakris G. Protection of the kidney by thiazolidinediones: an assessment from bench to bedside. Kidney Int 2006; 70: 1223-33. https://doi.org/10.1038/sj.ki.5001620
Radenkovi? M. Pioglitazone and endothelial dysfunction: pleiotropic effects and possible therapeutic implications. Sci Pharm 2014; 82: 709-21. https://doi.org/10.3797/scipharm.1407-16
Duan SB, Liu FY, Luo JA, Wu HW, Liu RH, Peng YM, Yang XL. Nephrotoxicity of high- and low-osmolar contrast media: the protective role of amlodipine in a rat model. Acta Radiol 2000; 41: 503-7. https://doi.org/10.1080/028418500127345794
Al-Otaibi KE, Al Elaiwi AM, Tariq M, Al-Asmari AK. Simvastatin attenuates contrast-induced nephropathy through modulation of oxidative stress, proinflammatory myeloperoxidase, and nitric oxide. Oxid Med Cell Longev 2012; 2012: 831748. https://doi.org/10.1155/2012/831748
Pereira MG, Câmara NOS, Campaholle G, Cenedeze MA, Teixeira VdPA, dos Reis MA, Pacheco-Silva A. Pioglitazone limits cyclosporine nephrotoxicity in rats. Int Immunopharmacol 2006; 6: 1943-51. https://doi.org/10.1016/j.intimp.2006.07.024
Zuo Y, Yang H-C, Potthoff SA, Najafian B, Kon V, Ma L-J, Fogo AB. Protective effects of PPAR? agonist in acute nephrotic syndrome. Nephrol Dial Transplant 2012; 27: 174-81. https://doi.org/10.1093/ndt/gfr240
Mahmoud MF, El Shazly SM. Pioglitazone protects against cisplatin induced nephrotoxicity in rats and potentiates its anticancer activity against human renal adenocarcinoma cell lines. Food Chem Toxicol 2013; 51: 114-22. https://doi.org/10.1016/j.fct.2012.09.006
Liu T-Q, Luo W-L, Tan X, Fang Y, Chen J, Zhang H, Yu XF, Cai JR, Ding XQ. A Novel Contrast-Induced Acute Kidney Injury Model Based on the 5/6-Nephrectomy Rat and Nephrotoxicological Evaluation of Iohexol and Iodixanol In Vivo. Oxid Med Cell Longev 2014; 2014: 427560.
Kongkham S, Sriwong S, Tasanarong A. Protective effect of alpha tocopherol on contrast-induced nephropathy in rats. Nefrologia 2013; 18; 33: 116-23.
Jensen H, Doughty RW, Grant D, Myhre O. A modified model of gentamicin induced renal failure in rats: toxicological effects of the iodinated X-ray contrast media ioversol and potential usefulness for toxicological evaluation of iodinated X-ray contrast media. Exp Toxicol Pathol 2013; 65: 601-7. https://doi.org/10.1016/j.etp.2012.06.003
Saritemur M, Un H, Cadirci E, Karakus E, Akpinar E, Halici Z, Ugan RA, Karaman A, Atmaca HT. Tnf-? inhibition by infliximab as a new target for the prevention of Glycerol-contrast-induced nephropathy. Environ Toxicol Pharmacol 2015; 39: 577-88. https://doi.org/10.1016/j.etap.2015.01.002
Boyacioglu M, Turgut H, Akgullu C, Eryilmaz U, Kum C, Onbasili OA. The effect of L-carnitine on oxidative stress responses of experimental contrast-induced nephropathy in rats. J Vet Med Sci 2014; 76: 1-8. https://doi.org/10.1292/jvms.13-0202
Tervahartiala P, Kivisaari L, Kivisaari R, Vehmas T, Virtanen I. Structural Changes in the Renal Proximal Tubular Cells Induced by lodinated Contrast Media. Nephron 1997; 76(1): 96-102. https://doi.org/10.1159/000190147
Duan SB, Wang YH, Liu FY, Xu XQ, Wang P, Zou Q, Peng YM. The protective role of telmisartan against nephrotoxicity induced by X-ray contrast media in rat model. Acta Radiol 2009; 50: 754-9. https://doi.org/10.1080/02841850902995544
Seeliger E, Sendeski M, Rihal CS, Persson PB. Contrast-induced kidney injury: mechanisms, risk factors, and prevention. Eur Heart J 2012; 33: 2007-15. https://doi.org/10.1093/eurheartj/ehr494
Ueda N, Shah SV. Tubular cell damage in acute renal failure—apoptosis, necrosis, or both. Nephrol Dial Transplant 2000; 15: 318-323. https://doi.org/10.1093/ndt/15.3.318
Pedrycz A, Boraty?ski Z, Drelich G. Apoptotic index and histological assessment of renal tubular epithelial cells during anthracycline-induced apoptosis. Influence of time. Bull Vet Inst Pulawy 2010; 54: 55-58.
Yoshihara D, Kurahashi H, Morita M, Kugita M, Hiki Y, Aukema HM, et al. PPAR-gamma agonist ameliorates kidney and liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease. Am J Physiol Renal Physiol 2011; 300: F465-74. https://doi.org/10.1152/ajprenal.00460.2010
Sarafidis PA, Georgianos PI, Lasaridis AN. PPAR-? Agonism for Cardiovascular and Renal Protection. Cardiovasc Ther 2011; 29: 377-84. https://doi.org/10.1111/j.1755-5922.2010.00222.x
Kong X, Ma M-Z, Qin L, Zhang Y, Li X-Y, Wang G-D, et al. Pioglitazone enhances the blood pressure-lowering effect of losartan via synergistic attenuation of angiotensin II-induced vasoconstriction. J Renin Angiotensin Aldosterone Syst 2014; 15: 259-70. https://doi.org/10.1177/1470320313489061
Panchapakesan U, Sumual S, Pollock CA, Chen X. PPAR? agonists exert antifibrotic effects in renal tubular cells exposed to high glucose. Am J Physiol Renal Physiol 2005; 289: F1153-8. https://doi.org/10.1152/ajprenal.00097.2005
Shiojiri T, Wada K, Nakajima A, Katayama K, Shibuya A, Kudo C, et al. PPAR? ligands inhibit nitrotyrosine formation and inflammatory mediator expressions in adjuvant-induced rheumatoid arthritis mice. Eur J Pharmacol 2002; 19; 448: 231-8. https://doi.org/10.1016/S0014-2999(02)01946-5
Reel B, Guzeloglu M, Bagriyanik A, Atmaca S, Aykut K, Albayrak G, et al. The effects of PPAR-? agonist Pioglitazone on renal ischemia/reperfusion injury in rats. J Surg Res 2013; 182: 176-84. https://doi.org/10.1016/j.jss.2012.08.020
Kuru Karabas M, Ayhan M, Guney E, Serter M, Meteoglu I. The effect of Pioglitazone on antioxidant levels and renal histopathology in streptozotocin-induced diabetic rats. ISRN Endocrinol 2013; 858690. https://doi.org/10.1155/2013/858690
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2017 Rama Mousleh , Shaza Al Laham