Influence of the Preparation "Nicavet-1000" on a Morphofunctional Condition of some Organs of Rats at Experimental Aluminium Intoxication
PDF

Keywords

 Aluminium, intoxication, hippocampus, bone tissue, tissue preparation.

How to Cite

David A. Areshidze, Lyudmila D. Timchenko, Igor V. Rzhepakovsky, Maria A. Kozlova, Iaroslavna A. Kusnetsova, & Ivan A. Syomin. (2017). Influence of the Preparation "Nicavet-1000" on a Morphofunctional Condition of some Organs of Rats at Experimental Aluminium Intoxication. Journal of Pharmacy and Nutrition Sciences, 7(4), 183–192. https://doi.org/10.6000/1927-5951.2017.07.04.5

Abstract

During the conducted research, it is established that aluminium chloride intoxication leads to the considerable changes of composition of red blood, development of a hypercalcemia and change of a bone structure of animals. A number of significant morphofunctional changes in the hippocampus of the examined animals are also noted. The use of the tissue preparation "Nicavet-1000" leads to the normalization of both hematocrit and other parameters of red blood, as well as to the intensification of erythropoiesis. Use of the preparation "Nicavet-1000", judging from the results of research, prevents pathological changes in a bone tissue, caused by aluminium chloride. "Nicavet-1000" leads to the expressed normalization of both the morphological, and micromorphometric parameters characterizing a hippocampus of rats.

https://doi.org/10.6000/1927-5951.2017.07.04.5
PDF

References

Exley C. Hippocampus. Amsterdam: Elsevier Science; 2001.

O'Neil MJ, editor. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th ed. New York: Merck and Co.; 2001.

Aremu DA, Meshitsuka S, Nose T. A Risk of Alzheimer's Disease and Aluminum in Drinking Water. Psychogeriatrics 2002; 2(4): 263-8. https://doi.org/10.1111/j.1479-8301.2002.tb00039.x

Whitehead MW, Farrar G, Christie GL, et al. Mechanisms of aluminum absorption in rats. Am J Clin Nutr 1997; 65(5): 1446-52.

Priest ND, Talbot RJ, Austin JG, et al. The bioavailability of 26 Al-labelled aluminium citrate and aluminium hydroxide in volunteers. BioMetals 1996; 9(3): 221-8. https://doi.org/10.1007/BF00817919

Gorsky JE, Dietz AA, Spencer H, Osis D. Metabolic balance of aluminum studied in six men. Clin Chem 1979; 25(10): 1739-43.

Sigel H, Sigel A, editor. Concepts for Metal Ion Toxicity. New York: Marcel Dekker; 1986.

Chmielnicka J, Nasiadek M, Lewandowska-Zyndul E. The effect of aluminum chloride on some steps of heme biosynthesis in rats after oral exposure. Biol Trace Elem Res 1994; 40(2): 127-36. https://doi.org/10.1007/BF02950786

Osi?ska E, Kanoniuk D, Kusiak A. Aluminum hemotoxicity mechanisms. Ann Univ Mariae Curie Sklodowska Med 2004; 59(1): 411-6.

Mailloux R J, Lemire J, Appanna VD. Hepatic response to aluminum toxicity: dyslipidemia and liver diseases. Exp Cell Res 2011; 317(16): 2231-8. https://doi.org/10.1016/j.yexcr.2011.07.009

Lemire J, Appanna VD. Aluminum toxicity and astrocyte dysfunction: a metabolic link to neurological disorders. Biochem 2011; 105(11): 1513-7. https://doi.org/10.1016/j.jinorgbio.2011.07.001

Chagnac A, Ben-Bassat M, Weinstein T, Levi J. Effect of Long-Term Aluminum Administration on the Renal Structure of the Rat. Nephron 1987; 47(1): 66-9. https://doi.org/10.1159/000184459

Yuan CY, Lee YJ, Hsu GS. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats. J Biomed Sci 2012; 19(1): 51. https://doi.org/10.1186/1423-0127-19-51

Markesbery WR. Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med 1997; 23(1): 134-47. https://doi.org/10.1016/S0891-5849(96)00629-6

González-Domínguez R, García-Barrera T, Gómez-Ariza JL. Homeostasis of metals in the progression of Alzheimer’s disease. BioMetals 2014; 27(3): 539-49. https://doi.org/10.1007/s10534-014-9728-5

Saber A, Mohammed F, Al Zubaidy I, et al. Does Aluminum Really Enhance Alzheimer Disease? Medical Impact of Aluminum on Human Health. European Journal of Scientific Research 2015; 136(1): 10-21.

Zhang QL, Jia L, Jiao X, et al. APP/PS1 transgenic mice treated with aluminum: an update of Alzheimer's disease model. Int J Immunopathol Pharmacol 2012; 25(1): 49-58. https://doi.org/10.1177/039463201202500107

Tomek SE, LaCrosse AL, Nemirovsky NE, et al. NMDA Receptor Modulators in the Treatment of Drug Addiction. Pharmaceuticals 2013; 6(2): 251-68. https://doi.org/10.3390/ph6020251

Berridge MJ. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 2013; (7)1: 2-13. https://doi.org/10.4161/pri.21767

Platt B, Fiddler G, Riedel G, et al. Aluminium toxicity in the rat brain: histochemical and immunocytochemical evidence. Brain Res Bull 2001; 55(2): 257-67. https://doi.org/10.1016/S0361-9230(01)00511-1

Alishah S, Ullah F, Yoon GH. Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (A?) production in ICR female mice. Nanoscale 2015; 7(37): 15225-37. https://doi.org/10.1039/C5NR03598H

Kawahara M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J Alzheimers Dis 2005; 8(2): 171-82. https://doi.org/10.3233/JAD-2005-8210

Sahin G, Isimer A, Temizer A, et al. The effect of aluminium loading on bones of mice. Arch Toxicol Suppl 1991; 14: 88-91. https://doi.org/10.1007/978-3-642-74936-0_18

Song M, Huo H, Cao Z, et al. Aluminum Trichloride Inhibits the Rat Osteoblasts Mineralization In vitro. Biol Trace Elem Res 2017; 175(1): 186-93. https://doi.org/10.1007/s12011-016-0761-9

Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, et al. The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice. Neuropharmacology 2015; 93: 134-45. https://doi.org/10.1016/j.neuropharm.2015.01.027

Maya S, Prakash T, Madhu KD, Goli D. Multifaceted effects of aluminium in neurodegenerative diseases: A review. Biomed Pharmacother 2016; 83: 746-54. https://doi.org/10.1016/j.biopha.2016.07.035

Nam SM, Kim JW, Yoo DY, et al. Reduction of adult hippocampal neurogenesis is amplified by aluminum exposure in a model of 2 diabetes. J Vet Sci 2016; 17(1): 13-20. https://doi.org/10.4142/jvs.2016.17.1.13

Cannata JB, Junor BJ, Briggs JD, Fell GS. Aluminium hydroxide intake: real risk of aluminium toxicity. Br Med J 1983; 286(6382): 1937-8. https://doi.org/10.1136/bmj.286.6382.1937-a

Graczyk A, D?ugaszek M. Biochemical processes and molecular mechanisms of aluminium toxicity (in Polish). Rocz Panstw Zakl Hig 1993; 44(1): 23-42.

Zaman K, Miszta H, D?browski Z. The effect of aluminium upon the activity of selected bone marrow enzymes in rats. Folia Haematol Int Mag Klin Morphol Blutforsch 1990; 117(3): 447-51.

Zaman K, Zaman W, D?browski Z, Miszta H. Inhibition of delta aminolevulinic acid dehydratase activity by aluminium. Comp Biochem Physiol C 1993; 104(2): 269-73. https://doi.org/10.1016/0742-8413(93)90034-I

Garay G, Grosso S, Douthat W, et al. Influence of aluminium overload on the course of post-transplant parathyroid function. Nephrol Dial Transplant 1996; 11(3): 65-8. https://doi.org/10.1093/ndt/11.supp3.65

Slanina ?, Falkeborn Y, Freeh W, Cedergren A. Aluminium concentrations in the brain and bone of rats fed citric acid, aluminium citrate or aluminium hydroxide. Food Chem Toxicol 1984; 22(5): 391-7. https://doi.org/10.1016/0278-6915(84)90369-7

Rodriguez M, Felsenfeld AJ, Llach F. The role of aluminum in the development of hypercalcemia in the rat. Kidney Int 1987; 31(3): 766-71. https://doi.org/10.1038/ki.1987.64

Oddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 2003; 39(3): 409-21. https://doi.org/10.1016/S0896-6273(03)00434-3

Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends Neurosci 2008; 31(9): 454-63. https://doi.org/10.1016/j.tins.2008.06.005

Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88(4): 640-51. https://doi.org/10.1016/j.bcp.2013.12.024

Sepulveda-Falla D, Barrera-Ocampo A, Hagel C, et al. Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis. J Clin Invest 2014; 124(4): 1552-67. https://doi.org/10.1172/JCI66407

Magi S, Castaldo P, Macrì ML, et al. Intracellular Calcium Dysregulation: Implications for Alzheimer's Disease. Biomed Res Int 2016; 2016: e6701324.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2017 David A. Areshidze, Lyudmila D. Timchenko, Igor V. Rzhepakovsky, Maria A. Kozlova, Iaroslavna A. Kusnetsova , Ivan A. Syomin