Effects of Buchholzia coriacea Seed on Nutrient Utilization and Serum Biochemical Parameters in Alloxan-Induced Diabetic Rat


Apparent digestibility, biological value, hypolipidemia, gas chromatography, glycosylated hemoglobin.

How to Cite

Nuria C. Amaechi, PhilippaC.Ojimelukwe , & Samuel O. Onoja. (2018). Effects of Buchholzia coriacea Seed on Nutrient Utilization and Serum Biochemical Parameters in Alloxan-Induced Diabetic Rat . Journal of Pharmacy and Nutrition Sciences, 8(4), 192–198. https://doi.org/10.29169/1927-5951.2018.08.04.6


The effects of Buchholzia coriacea seed on the nutrient utilization and biochemical parameters in alloxan-induced diabetic rat were evaluated. Buchholzia coriacea (BC) seed was washed, sliced, dried, pulverized and mixed with standard ration at 2.5%, 5%, 10% and 20%. The proximate nutrient composition of the standard and prepared rations was determined. The Buchholzia coriacea incorporated rations and standard ration were fed to alloxan-induced diabetic rats for 70 consecutive days. The nutrient utilization and biochemical parameters as well as the histopathology of pancreas of the treated rats were evaluated. The Buchholzia coriacea at 2.5% inclusion rate significantly (p < 0.05) improved the nutrient utilization and biochemical parameters that were compromised in diabetic rats fed with standard ration alone. The B. coriacea also reversed the pancreatic islet damage induced by alloxan. Buchholzia coriacea have potent antidiabetic and hypolipidemic activities and should not be incorporation in excess of 5% in the diet.



Burkill HM. The useful plants of West Tropical Africa (2nd Ed) Volume 5, Families S-Z, Addenal. United Kingdom; Royal Botanic Garden 2000.

Nwaehujor CO, Ode OJ, Nwinyi FC, Udeh NE. Effect of methanol extract of Buchholzia coriacea fruits on streptozotocin-induced diabetic rats. J Pharmacol Toxicol 2012; 7: 181-91. https://doi.org/10.3923/jpt.2012.181.191

Enechi OC, Nwodo OF. Anti-ulcer and gastric anti-secretory activities of seed extract of Buchholzia coriacea in Wistar Albino rats. Afr J Biotechno 2014; 13(27): 2755-61. https://doi.org/10.5897/AJB2014.13858

Ezeja MI, Ezeigbo II, Madubuike KG. Analgesic activity of the methanolic seed extract of Buchholzia coriacea. Res J Pharmaceut Biol Chem Sci 2011; 2: 187-93.

Okoye TC. Anti-diabetic Effects of Methanol Extract of the Seeds of Buchholzia coriacea and its Synergistic Effects with Metformin. Asian J Biomed Pharm 2012; 2(12): 32-6.

Nweze NE, Asuzu IU. The Anthelmintic effects of Buchholzia coriacea seed. Nigerian Veterinary Journal 2006; 27(2): 60-65.

Adisa RA, Choudhary MI, Olorunsogo OO. Hypoglycemic activity of Buchholzia coriacea (Capparaceae) seeds in streptozotocin-induced diabetic rats and mice. Exp Toxicol Pathol 2011; 63(7-8): 619-25. https://doi.org/10.1016/j.etp.2010.05.002

Olaleye SB, Ige AO, Michael OS, Owoyele BV. Analgesic and Anti-Inflammatory effects of Ethanol Extracts of Buchholzia coriacea Seeds in Male Rats. Afr J Biomed Res 2012; 15(3): 171-6.

Obiudu IK, Okolie AC, Agbafor KN, Unaegbu ME, Engwa GA, Obiudu CV. Anti-diabetic property and phytochemical composition of aqueous and methanol extracts of Buchholzia coriacea seeds in alloxan-induced diabetic rats. J Med Sci 2015; 15(5): 241-5. https://doi.org/10.3923/jms.2015.241.245

Amaechi NC, Ojimelukwe PC, Onoja SO. Effects of Vernonia amygdalina leaf on nutritional and biochemical parameters in alloxan-induced diabetic rats. J Nutr Ther 2018; 7(1) (in press). https://doi.org/10.6000/1929-5634.2018.07.01.2

DHHS. Guide for the care and use of laboratory animals, Institute of Laboratory Animal Resources Commission on Life Sciences, National Research Council. Washington, DC: National Academy Press, 1985.

James CS. Analytical Chemistry of Foods. London; Blackie Academic and Professional 1995. https://doi.org/10.1007/978-1-4615-2165-5

Pellet PL, Young VR. Evaluation of protein quality in experimental animals In: Nutritional evaluation of protein foods (1st Ed). Tokyo: The United Nations University 1980; pp. 41-57.

Trivelli LA, Ranney PH, Lai HT. Glycohemoglobin in diabetic subjects. N Engl J Med 1971; 284: 353-7. https://doi.org/10.1056/NEJM197102182840703

Friedwald WT, Leve IR, Fredrickson SD. Estimation of the concentration of low density lipoprotein seperation by three different methods. Clin Chem 1972; 18: 499-502.

Berrougui H, Ettaib A, Gonzalez MDH, Sotomayor MA, Bennani-Kabchi N, Hmamouchi M. Hypolipidemic and hypocholesterolemic effect of argan oil (Argania spinosa L.) in Meriones shawi rats. J Ethnopharmacol 2003; 89: 15-8. https://doi.org/10.1016/S0378-8741(03)00176-4

Duru M, Ugbogu A, Amadi B, Odika PO, Chima-Ezika O, Anudike J, Osuocha K. Chemical constituents of Buchholzia coriacea seed. Acadmia Edu 2013; 70: 39-41.

Thijssen MA, Mensink RP. Small differences in the effects of stearic acid, oleic acid, and linoleic acid on the serum lipoprotein profile of humans. Am J Clin Nutr 2005; 82: 510-6. https://doi.org/10.1093/ajcn/82.3.510

Shirwaikar A, Punitha ISR, Upadhye M, Dhiman A. Antidiabetic activity of alcohol root extract of Holostemma annulare in NIDDM rats. Pharm Biol 2007; 45: 440-5. https://doi.org/10.1080/13880200701388989

Nnamani CV. (2013). Ethnobotanical survey of traditional leafy vegetables of Ikwo and Ezza clans of Ebonyi State, Nigeria. Nigerian Journal of Botany. Available at: http://nijbot.org/?p=135 (Accessed 12/01/2017).

Howarth NC, Saltzman E, Robert SB. Dietary fiber and weight regulation. Nutr Rev 2014; 59: 129-39. https://doi.org/10.1111/j.1753-4887.2001.tb07001.x

El-shobaki FA, El-Bahay AM, Esmail RSA. Effect of figs fruit (Ficus carica) and it’s leaves on Hyperglycemia in alloxan diabetic rats. World J Dairy Food Sci 2010; 5: 47-57.

Mišurcová L, Krá?mar S, Klejdus B, Vacek J?. Nitrogen content, dietary fiber, and digestibility in algal food products. Czech J Food Sci 2010; 28: 27-35. https://doi.org/10.17221/111/2009-CJFS

Lattimer JM, Haub MD. Effects of dietary fiber and its components on metabolic health. Nutrients 2010; 2: 1266-89. https://doi.org/10.3390/nu2121266

Jain S, Bhatia G, Barik R, Kumar P, Jain A, Dixit VK. Antidiabetic activity of Paspalum scrobiculatum Linn. in alloxan induced diabetic rats. J Ethnopharmacol 2010; 127: 325-8. https://doi.org/10.1016/j.jep.2009.10.038

Kumar S, Kumar V, Prakash OM. Antidiabetic, hypolipidemic and antioxidant activities of Callistemon lanceolatus leaves extract. J Herbs Spices Med Plants 2011; 17: 144-53. https://doi.org/10.1080/10496475.2011.583139

Ezeja MI, Anaga AO, Asuzu IU. Antidiabetic, antilipidemic, and antioxidant activities of Gouania longipetala methanol leaf extract in alloxan-induced diabetic rats. Pharm Biol 2015; 53: 605-14. https://doi.org/10.3109/13880209.2014.935864

Nweze NE. Studies on the Antioxidant and Antimicrobial Activities of the Seed Extracts of Buchholzia coriacea (capparaceae). Nigerian Veterinary Journal 2011; 32(2): 143-7.

Bavarva JH, Narasimhacharya AVRL. Comparative antidiabetic, hypolipidemic, and antioxidant properties of Phyllanthus niruri in normal and diabetic rats. Pharm Biol 2007; 45: 569-74. https://doi.org/10.1080/13880200701499034

Pfützner A, Weber MM, Forst T. Pioglitazone: update on an oral antidiabetic drug with antiatherosclerotic effects. Exp Opin Pharmacother 2007; 8: 1985-98. https://doi.org/10.1517/14656566.8.12.1985

Buchanan T, Buchanan T. Pancreatic ?-cell loss and preservation in Type 2 diabetes. Clin Ther 2003; 23(Suppl): B32-B46. https://doi.org/10.1016/S0149-2918(03)80241-2

Arulmozhi DK, Kurian R, Veeranjaneyulu A, Bodhankar SL. Antidiabetic and antihyperlipidemic effects of Myristica fragrans in animal models. Pharm Biol 2007; 45: 64-8. https://doi.org/10.1080/13880200601028339

Van Bennekum AM, Nguyen DV, Schulthess G, Hauser H, Phillips MC. Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: relationships with intestinal and hepatic cholesterol parameters. Br J Nutr 2005; 94: 331-7. https://doi.org/10.1079/BJN20051498

Olaiya CO, Omolekan TO. Antihypercholesterolemic activity of ethanolic extract of Buchholzia coriacea in rats. Afr Health Sci 2013; 13(4): 1084-90.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2018 Nuria C. Amaechi , Philippa C. Ojimelukwe  , Samuel O. Onoja