Abstract
Gadolinium orthovanadate GdVO4:Eu3+ nanoparticles (VNPs) have been shown to scavenge reactive oxygen species (ROS), making them a promising therapeutic agent in inflammation.
This study aims to assess the effects of VNPs administered orally on E407a-induced inflammation.
Materials and Methods: Fragments of the small intestine of 8 rats treated orally with a carrageenan-containing food additive E407a at a dose of 140 mg / kg of weight during 2 weeks, 8 animals orally exposed to both E407a and VNPs at a dose of 20 μg / kg of weight during the same period of time, and 8 control rats were stained routinely and immunostained for CD3 and CD68 with the subsequent immunohistochemical scoring. Moreover, analysis of viability and cell death modes of granulocytes was performed by flow cytometry using Annexin V and 7-aminoactinomycin D (7-AAD).
Results: Oral exposure to the food additive E407a resulted in the development of enteritis associated with altered small intestinal morphology, infiltration of the lamina propria with macrophages and T-lymphocytes, and activation of peripheral blood granulocyte apoptosis. VNPs administered against the background of E407a-induced slight intestinal inflammation improved small intestinal morphology, decreased infiltration rate of the immune cells mentioned above without affecting the intensity of granulocyte apoptosis.
Conclusion: Oral administration of VNPs ameliorates E407a-induced enteritis.
References
Gupta R, Xie H. Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol 2018; 37(3): 209-230. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009
Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arabian Journal of Chemistry 2019; 12(7): 908-931.https://doi.org/10.1016/j.arabjc.2017.05.011
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-1074. https://doi.org/10.3762/bjnano.9.98
Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med 2019; 4(3): e10143. https://doi.org/10.1002/btm2.10143
Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med 2016; 1(1): 10-29. https://doi.org/10.1002/btm2.10003
Giner-Casares JJ, Henriksen-Lacey M, Coronado-Puchau M, Liz-Marzán LM. Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. Materials Today 2016; 19(1): 19-28. https://doi.org/10.1016/j.mattod.2015.07.004
Awasthi R, Roseblade A, Hansbro PM, Rathbone MJ, Dua K, Bebawy M. Nanoparticles in cancer treatment: Opportunities and obstacles. Curr Drug Targets 2018; 19(14): 1696-1709. https://doi.org/10.2174/1389450119666180326122831
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 2017; 12: 1227-1249. https://doi.org/10.2147/IJN.S121956
AgarwalH, Nakara A, Shanmugam VK. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomedicine & Pharmacotherapy 2019; 109: 2561-2572. https://doi.org/10.1016/j.biopha.2018.11.116
Poupot R, Bergozza D, Fruchon S. Nanoparticle-based strategies to treat neuro-inflammation. Materials (Basel) 2018; 11(2): 270. https://doi.org/10.3390/ma11020270
Katsuki S, Matoba T, Koga JI, Nakano K, Egashira K. Anti-inflammatory nanomedicine for cardiovascular disease. Front Cardiovasc Med 2017; 4: 87. https://doi.org/10.3389/fcvm.2017.00087
Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 2019; 111: 802-812. https://doi.org/10.1016/j.biopha.2018.12.146
Casals E, Gusta MF, Piella J, Casals G, Jiménez W, Puntes V. Intrinsic and extrinsic properties affecting innate immune responses to nanoparticles: The case of cerium oxide. Front Immunol 2017; 8: 970. https://doi.org/10.3389/fimmu.2017.00970
Averchenko EA, Kavok NS, Klochkov VK, Malyukin YuV. Chemiluminescent diagnostics of free-radical processes in an abiotic system and in liver cells in the presence of nanoparticles based on rare-earth elements nReVO4: Eu3+(Re = Gd, Y, La) and CeO2. J Appl Spectrosc 2014; 81: 827-833.https://doi.org/10.1007/s10812-014-0012-9
Nikitchenko YV, Klochkov VK. Kavok NS, Karpenko NA, Sedyh OO, Bozhkov AI, et al. Gadolinium orthovanadate nanoparticles increase survival of old rats. Dopov. Nac. akad. nauk Ukr 2020; 2: 29-36
[in Russian] .https://doi.org/10.15407/dopovidi2020.02.029
Sun H, Jiang C, Wu L, Bai X, Zhai S. Cytotoxicity-related bioeffects induced by nanoparticles: the role of surface chemistry. Front Bioeng Biotechnol 2019; 7: 414. https://doi.org/10.3389/fbioe.2019.00414
De Matteis V. Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivotoxicity evaluation. Toxics 2017; 5(4): 29. https://doi.org/10.3390/toxics5040029
Khalili Fard J, Jafari S, Eghbal MA. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 2015; 5(4): 447-454. https://doi.org/10.15171/apb.2015.061
Sabella S, Carney RP, Brunetti V, Malvindi MA, Al-Juffali N, Vecchio G, et al. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 2014; 6(12): 7052-61. https://doi.org/10.1039/c4nr01234h
Tkachenko AS, Klochkov VK, LesovoyVN, Myasoedov VV, KavokNS, OnishchenkoAS, et al. Orally administered gadolinium orthovanadate GdVO4: Eu3+ nanoparticles don’t affect the hydrophobic region of cell membranes of leukocytes. Wien. Med. Wochenschr 2020; 170(7): 189-195. https://doi.org/10.1007/s10354-020-00735-4
Klochkov VK, Malyshenko AI, Sedyh OO, Malyukin YuV. Wet-chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO4: Eu3+ (Re=La, Gd, Y) with rod-like and spindle-like shape. Functional materials 2011; 1: 111-115.
Eiró N, Pidal I, Fernandez-Garcia B, Junquera S, Lamelas ML, del Casar JM, et al. Impact of CD68/(CD3+CD20) ratio at the invasive front of primary tumors on distant metastasis development in breast cancer. PLoS One 2012; 7(12): e52796.https://doi.org/10.1371/journal.pone.0052796
Sjödahl G, Lövgren K, Lauss M, Chebil G, Patschan O, Gudjonsson S, et al. Infiltration of CD3⁺ and CD68⁺ cells in bladder cancer is subtype specific and affects the outcome of patients with muscle-invasive tumors. Urol Oncol 2014; 32 (6): 791-7. https://doi.org/10.1016/j.urolonc.2014.02.007
Areshidze D, Timchenko L, Rzhepakovsky I, Kozlova MA, Kuznetsova IA, Makartseva LA. Anti-inflammatory effect of nicavet-2500 in rodent models of acute inflammation. Journal of Pharmacy and Nutrition Sciences 2018; 8(2): 35-41.https://doi.org/10.6000/1927-5951.2018.08.02.2
Shaza Anwar Al Laham. Histopathological changes of the effect of ketotifen in a rat model of nephropathy. Journal of Pharmacy and Nutrition Sciences 2019; 9(2): 130-135. https://doi.org/10.29169/1927-5951.2019.09.02.13
Tkachenko AS, Onishchenko AI,LesovoyVN, Myasoedov VV. Common food additive E407a affects BCL-2 expression in lymphocytes in vitro.Studia Univ. VG, SSV 2019; 29(4): 169-76.
David S, Shani Levi C, Fahoum L, Ungar Y, Meyron-Holtz EG, Shpigelman A, et al. Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods? Food Funct 2018; 9(3): 1344-1352.https://doi.org/10.1039/C7FO01721A
Tkachenko A, Marakushyn D, Kalashnyk I, Korniyenko Y, Onishchenko A, Gorbach T, et al. A study of enterocyte membranes during activation of apoptotic processes in chronic carrageenan-induced gastroenterocolitis. Med Glas (Zenica) 2018; 15(2): 87-92.
McKim JM Jr, Baas H, Rice GP, Willoughby JA Sr, Weiner ML, Blakemore W. Effects of carrageenan on cell permeability, cytotoxicity, and cytokine gene expression in human intestinal and hepatic cell lines. Food Chem Toxicol 2016; 96: 1-10. https://doi.org/10.1016/j.fct.2016.07.006
Gubina-Vakyulyk GI, Gorbach TV, Tkachenko AS, Tkachenko MO. Damage and regeneration of small intestinal enterocytes under the influence of carrageenan induces chronic enteritis. Comparative Clinical Pathology 2015; 24(6): 1473-1477. https://doi.org/10.1007/s00580-015-2102-3
Necas J, Bartosikova L. Carrageenan: a review. Veterinarni Medicina 2013; 58: 187-205.https://doi.org/10.17221/6758-VETMED
Bhattacharyya S, Dudeja PK, Tobacman JK. Carrageenan-induced NFκB activation depends on distinct pathways mediated by reactive oxygen species and Hsp27 or by Bcl10. Biochimica et Biophysica Acta—General Subjects 2008; 1780(7-8): 973-982. https://doi.org/10.1016/j.bbagen.2008.03.01
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.