Gadolinium Orthovanadate GdVO4:Eu3+ Nanoparticles Ameliorate Carrageenan-Induced Intestinal Inflammation


food additive E407a
flow cytometry

How to Cite

Tkachenko, A., Pogozhykh, D., Onishchenko, A., Myasoedov, V., Podrigalo, L., Klochkov, V., Chumachenko, T., Prokopyuk, V., Yefimova, S., Gubina-Vakulyck, G., Kavok, N., Butov, D., Andrieiev, A., Polikarpova, H., & Nakonechna, O. (2021). Gadolinium Orthovanadate GdVO4:Eu3+ Nanoparticles Ameliorate Carrageenan-Induced Intestinal Inflammation. Journal of Pharmacy and Nutrition Sciences, 11, 40–48.


Gadolinium orthovanadate GdVO4:Eu3+ nanoparticles (VNPs) have been shown to scavenge reactive oxygen species (ROS), making them a promising therapeutic agent in inflammation.

This study aims to assess the effects of VNPs administered orally on E407a-induced inflammation.

Materials and Methods: Fragments of the small intestine of 8 rats treated orally with a carrageenan-containing food additive E407a at a dose of 140 mg / kg of weight during 2 weeks, 8 animals orally exposed to both E407a and VNPs at a dose of 20 μg / kg of weight during the same period of time, and 8 control rats were stained routinely and immunostained for CD3 and CD68 with the subsequent immunohistochemical scoring. Moreover, analysis of viability and cell death modes of granulocytes was performed by flow cytometry using Annexin V and 7-aminoactinomycin D (7-AAD).

Results: Oral exposure to the food additive E407a resulted in the development of enteritis associated with altered small intestinal morphology, infiltration of the lamina propria with macrophages and T-lymphocytes, and activation of peripheral blood granulocyte apoptosis. VNPs administered against the background of E407a-induced slight intestinal inflammation improved small intestinal morphology, decreased infiltration rate of the immune cells mentioned above without affecting the intensity of granulocyte apoptosis.

Conclusion: Oral administration of VNPs ameliorates E407a-induced enteritis.


Gupta R, Xie H. Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol 2018; 37(3): 209-230.

Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arabian Journal of Chemistry 2019; 12(7): 908-931.

Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-1074.

Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med 2019; 4(3): e10143.

Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med 2016; 1(1): 10-29.

Giner-Casares JJ, Henriksen-Lacey M, Coronado-Puchau M, Liz-Marzán LM. Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. Materials Today 2016; 19(1): 19-28.

Awasthi R, Roseblade A, Hansbro PM, Rathbone MJ, Dua K, Bebawy M. Nanoparticles in cancer treatment: Opportunities and obstacles. Curr Drug Targets 2018; 19(14): 1696-1709.

Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 2017; 12: 1227-1249.

AgarwalH, Nakara A, Shanmugam VK. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomedicine & Pharmacotherapy 2019; 109: 2561-2572.

Poupot R, Bergozza D, Fruchon S. Nanoparticle-based strategies to treat neuro-inflammation. Materials (Basel) 2018; 11(2): 270.

Katsuki S, Matoba T, Koga JI, Nakano K, Egashira K. Anti-inflammatory nanomedicine for cardiovascular disease. Front Cardiovasc Med 2017; 4: 87.

Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 2019; 111: 802-812.

Casals E, Gusta MF, Piella J, Casals G, Jiménez W, Puntes V. Intrinsic and extrinsic properties affecting innate immune responses to nanoparticles: The case of cerium oxide. Front Immunol 2017; 8: 970.

Averchenko EA, Kavok NS, Klochkov VK, Malyukin YuV. Chemiluminescent diagnostics of free-radical processes in an abiotic system and in liver cells in the presence of nanoparticles based on rare-earth elements nReVO4: Eu3+(Re = Gd, Y, La) and CeO2. J Appl Spectrosc 2014; 81: 827-833.

Nikitchenko YV, Klochkov VK. Kavok NS, Karpenko NA, Sedyh OO, Bozhkov AI, et al. Gadolinium orthovanadate nanoparticles increase survival of old rats. Dopov. Nac. akad. nauk Ukr 2020; 2: 29-36

[in Russian] .

Sun H, Jiang C, Wu L, Bai X, Zhai S. Cytotoxicity-related bioeffects induced by nanoparticles: the role of surface chemistry. Front Bioeng Biotechnol 2019; 7: 414.

De Matteis V. Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivotoxicity evaluation. Toxics 2017; 5(4): 29.

Khalili Fard J, Jafari S, Eghbal MA. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 2015; 5(4): 447-454.

Sabella S, Carney RP, Brunetti V, Malvindi MA, Al-Juffali N, Vecchio G, et al. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 2014; 6(12): 7052-61.

Tkachenko AS, Klochkov VK, LesovoyVN, Myasoedov VV, KavokNS, OnishchenkoAS, et al. Orally administered gadolinium orthovanadate GdVO4: Eu3+ nanoparticles don’t affect the hydrophobic region of cell membranes of leukocytes. Wien. Med. Wochenschr 2020; 170(7): 189-195.

Klochkov VK, Malyshenko AI, Sedyh OO, Malyukin YuV. Wet-chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO4: Eu3+ (Re=La, Gd, Y) with rod-like and spindle-like shape. Functional materials 2011; 1: 111-115.

Eiró N, Pidal I, Fernandez-Garcia B, Junquera S, Lamelas ML, del Casar JM, et al. Impact of CD68/(CD3+CD20) ratio at the invasive front of primary tumors on distant metastasis development in breast cancer. PLoS One 2012; 7(12): e52796.

Sjödahl G, Lövgren K, Lauss M, Chebil G, Patschan O, Gudjonsson S, et al. Infiltration of CD3⁺ and CD68⁺ cells in bladder cancer is subtype specific and affects the outcome of patients with muscle-invasive tumors. Urol Oncol 2014; 32 (6): 791-7.

Areshidze D, Timchenko L, Rzhepakovsky I, Kozlova MA, Kuznetsova IA, Makartseva LA. Anti-inflammatory effect of nicavet-2500 in rodent models of acute inflammation. Journal of Pharmacy and Nutrition Sciences 2018; 8(2): 35-41.

Shaza Anwar Al Laham. Histopathological changes of the effect of ketotifen in a rat model of nephropathy. Journal of Pharmacy and Nutrition Sciences 2019; 9(2): 130-135.

Tkachenko AS, Onishchenko AI,LesovoyVN, Myasoedov VV. Common food additive E407a affects BCL-2 expression in lymphocytes in vitro.Studia Univ. VG, SSV 2019; 29(4): 169-76.

David S, Shani Levi C, Fahoum L, Ungar Y, Meyron-Holtz EG, Shpigelman A, et al. Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods? Food Funct 2018; 9(3): 1344-1352.

Tkachenko A, Marakushyn D, Kalashnyk I, Korniyenko Y, Onishchenko A, Gorbach T, et al. A study of enterocyte membranes during activation of apoptotic processes in chronic carrageenan-induced gastroenterocolitis. Med Glas (Zenica) 2018; 15(2): 87-92.

McKim JM Jr, Baas H, Rice GP, Willoughby JA Sr, Weiner ML, Blakemore W. Effects of carrageenan on cell permeability, cytotoxicity, and cytokine gene expression in human intestinal and hepatic cell lines. Food Chem Toxicol 2016; 96: 1-10.

Gubina-Vakyulyk GI, Gorbach TV, Tkachenko AS, Tkachenko MO. Damage and regeneration of small intestinal enterocytes under the influence of carrageenan induces chronic enteritis. Comparative Clinical Pathology 2015; 24(6): 1473-1477.

Necas J, Bartosikova L. Carrageenan: a review. Veterinarni Medicina 2013; 58: 187-205.

Bhattacharyya S, Dudeja PK, Tobacman JK. Carrageenan-induced NFκB activation depends on distinct pathways mediated by reactive oxygen species and Hsp27 or by Bcl10. Biochimica et Biophysica Acta—General Subjects 2008; 1780(7-8): 973-982.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.