Nutritional Genomic: A Multi-Directional Approach to Address Complex Diseases with Multi-Functional Nutrition


 Food, gene-nutrient interaction, dandelion, artichoke, phytochemicals, minerals.

How to Cite

Marta González-Castejón, & Arantxa Rodriguez-Casado Madrid. (2011). Nutritional Genomic: A Multi-Directional Approach to Address Complex Diseases with Multi-Functional Nutrition . Journal of Pharmacy and Nutrition Sciences, 1(2), 147–157.


Nutritional genomics describes the biological interactions between genes and diet, their effects on the metabolism, and susceptibility to develop diseases. This approach covers both nutrigenomics that explores the effects of nutrients on the genome; and nutrigenetics that explores the effects of genetic polymorphisms on diet/disease interactions. These interactions vary because individuals have unique combinations of common genetic polymorphisms that are differentially affected by diet. Diseases causality is associated to certain genetic polymorphisms providing predictive biomarkers for diagnostic accuracy. Specific nutrient can modify the expression of genes through the interaction with receptors that activate the transcription of target genes and affect signal pathways. Nutritional genomics is aimed to prevent onset of diseases and maintain human health, identify individuals who are responders and can benefit from specific dietary interventions, and identify how genetic variation affects human nutritional requirements. Nutritional genomics has many potential therapeutic and preventive applications: in individuals with a genetic predisposition to complex diseases including cancer, diabetes and cardiovascular disorders; in those already suffering from these diseases; and in those with memory impairment during aging. This review describes nutritional facts linked to genomic aspects to manage multigenic diseases. It presents some notable example of nutrients with proven modulating gene activity, and the role of nutrition associated with nutritional genomics. Hereafter we briefly review the health-promoting properties of two well-known edible plants, i.e. dandelion and artichoke whose presence in the diet could simultaneously exert positive influence on molecular genomic mechanisms related to risk factors for chronic diseases.


Kaput J, Rodriguez RL. Nutritional genomics: the next frontier in the postgenomic era. Physiol Genomics 2004; 16: 166-77.

Simopoulos AP. Genetic Variation: Nutritional Implications. In: Simopoulos AP, Ordovás JM editors. Nutrigenetics and Nutrigenomics. World Rev Nutr Diet. Basel: Karger 2004; p. 1-28.

Ordovás JM. Genetic influences on blood lipids and cardiovascular disease risk: tools for primary prevention. Am J Clin Nutr 2009; 89: 1509-17.

Martí AA, Moreno-Aliaga MJ, Zulet MA, Martinez JA. Revisión: Avances en nutrición molecular: nutrigenómica y/o nutrigenética. Nutr Hosp 2005; 20: 157-64.

Sitta A, Alethéa GB, Deon M, Barden AT, Biancini GB, Vargas PR, et al. Effect of short- and long-term exposition to high phenylalanine blood levels on oxidative damage in phenylketonuric patients. Int J Dev Neurosci 2009; 27: 243-47.

Alberdi G, Rodríguez VM, Miranda J, Macarulla MT, Arias N, Andrés-Lacueva C, et al. Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutr Metab (Lond) 2011; 8: 29.

Lim WY, Chia YY, Liong SY, Ton SH, Kadir KA, Husain SN. Lipoprotein lipase expression, serum lipid and tissue lipid deposition in orally-administered glycyrrhizic acid-treated rats. Lipids Health Dis 2009; 8: 31.

Ramagopalan SV, Heger A, Berlanga AJ, Maugeri NJ, Lincoln MR, Burrell A, et al. A ChIP-seq defined genome-

wide map of vitamin D receptor binding: Associations with disease and evolution. Genome Res 2010; 20: 1352-60.

GAIN Collaborative Research Group. New models of collaboration in genome-wide association studies: the genetic association information network. Nature Genetics 2007; 39: 1045-51.

Welcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661-78.

Gibson G. Decanalization and the origin of complex disease. Nat Rev Genet 2009; 10: 134-40.

Kazuno AA, Munakata K, Nagai T, Shimozono S, Tanaka M, Yoneda M, et al. Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet 2006; 2: e128.

Coenen MJ, Gregersen PK. Rheumatoid arthritis: a view of the current genetic landscape. Genes Immun 2009; 10: 101-11.

Plenge RM. Shared genetic risk factors for type 1 diabetes and celiac disease. N Engl J Med 2008; 359: 2837-8.

Kadowaki T, Kadowaki H, Mori Y, Tobe K, Sakuta R, Suzuki Y. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N Engl J Med 1994; 330: 962-8.

Weaver KL, Ivester P, Seeds MC, Case LD, Arm J, Chilton FH. Effect of dietary fatty acids on inflammatory gene expression in healthy humans. J Biol Chem 2009; 284: 15400-7.

Sampath H, Ntambi JM. Regulation of gene expression by polyunsaturated fatty acids. Heart Metab 2006; 32: 32-5.

Jourdan C, Kloiber S, Nieters A, Seiler H, Himmerich H, Kohli MA, et al. Gene-PUFA interactions and obesity risk. Br J Nutr 2011; 106: 1263-72.

Vaskonen T. Dietary minerals and modification of cardiovascular risk factors. J Nutr Biochem 2003; 14: 492-506.

Fleet JC, Replogle R, Salt DE. Systems genetics of mineral metabolism. J Nutr 2011; 141: 520-5.

Rayman MP. The importance of selenium to human health. Lancet 2000; 356: 233-41.

Formigari A, Irato P, Santon A. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146: 443-59.

Lila MA, Raskin I. Health-related interactions of phytochemicals. J Food Sci 2005; 70: R20-7.

Visioli F, De La Lastra CA, Andres-Lacueva C, Aviram M, Calhau C, Cassano A, et al. Polyphenols and Human Health: A Prospectus. Crit Rev Food Sci Nutr 2011; 51: 524.

González-Castejón M, Rodriguez-Casado A. Dietary phytochemicals and their potential effects on obesity: A review. Pharmacol Res 2011; 64: 438-55.

Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 2006; 545: 51-64.

Signorelli P, Ghidoni R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 2005; 16: 449-66.

Bureau G, Longpré F, Martinoli MG. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res 2008; 86: 403-10.

Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets 2011; 12: 332-47.

Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 2010; 30: 173-99.

Yance DR, Sagar SM. Targeting angiogenesis with integrative cancer therapies. Integr Cancer Ther 2006; 5: 9-29.

Xavier CPR, Lima CF, Preto A, Seruca R, Fernandes-Ferreira M, Pereira-Wilson C. Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Lett 2009; 281: 162-70.

Rezai-Zadeh K, Ehrhart J, Bai Y, Sanberg PR, Bickford P, Tan J, et al. Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J Neuroinflammation 2008; 5: 41.

Lee YS. Role of NADPH oxidase-mediated generation of reactive oxygen species in the mechanism of apoptosis induced by phenolic acids in HepG2 human hepatoma cells. Arch Pharm Res 2005; 28: 1183-9.

Sudheer A, Muthukumaran S, Kalpana C, Srinivasan M, Menon VP. Protective effect of ferulic acid on nicotine-induced DNA damage and cellular changes in cultured rat peripheral blood lymphocytes: A comparison with N-acetylcysteine. Toxicol In Vitro 2007; 21: 576-585.

Guom S, Yang S, Taylor C, Sonenshein GE. Green tea polyphenol epigallocatechin-3 gallate (EGCG) affects gene expression of breast cancer cells transformed by the carcinogen 7,12-dimethylbenz[a]anthracene. J Nutr 2005; 135: 2978S-86S.

Wang YJ, Thomas P, Zhong JH, Bi FF, Kosaraju S, Pollard A, et al. Consumption of grape seed extract prevents amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer's disease mouse. Neurotox Res 2009; 15: 3-14.

Shao ZH, Wojcik KR, Dossumbekova A, Hsu C, Mehendale SR, Li CQ, et al. Grape seed proanthocyanidins protect cardiomyocytes from ischemia and reperfusion injury via Akt-NOS signaling. J Cell Biochem 2009; 107: 697-705.

Geleijnse JM, Hollman PCH. Flavonoids and cardiovascular health: which compounds, what mechanisms? Am J Clin Nutr 2008; 88: 12-3.

Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 2003; 361: 2017-23.

Nishino H, Murakoshi M, Tokuda H, Satomi Y. Cancer prevention by carotenoids. Arch Biochem Biophys 2009; 483: 165-8.

Bai SK, Lee SJ, Na HJ, Ha KS, Han JA, Lee H, et al. β-carotene inhibits inflammatory gene expression in lipopolysaccharide stimulated macrophages by suppressing redox-based NF-kappaB activation. Exp Mol Med 2005; 37: 323-34.

Jesch ED, Lee JY, Carr TP. Dietary plant sterols regulate genes involved in cholesterol metabolism in mouse liver but not intestine. FASEB J 2008; 22: 700.35.

Ried K, Frank OR, Stocks NP, Fakler P, Sullivan T. Effect of garlic on blood pressure: A systematic review and meta-analysis. BMC Cardiovasc Disord 2008; 8: 13.

Ross SA, Finley JW, Milner JA. Significance of garlic and its constituents in cancer and cardiovascular disease. Allyl sulfur compounds from garlic modulate aberrant crypt formation. J Nutr 2006; 136: 852S-4S.

Virgili F, Marino M. Regulation of cellular signals from nutritional molecules: a specific role for phytochemicals, beyond antioxidant activity. Free Radic Biol Med 2008; 45: 1205-16.

Schütz K, Carle R, Schieber A. Taraxacum - A review on its phytochemical and pharmacological profile. J Ethnopharmacol 2006; 107: 313-23.

Hum C, Kitts DD. Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro. Phytomedicine 2005; 12: 588-97.

González-Castejón M, Visioli F, Rodriguez-Casado A. Dandelion: a current review of its diverse biological activities. Nutrition Reviews (in press).

Cho SY, Park JY, Parl EM, Choi MS, Lee MK, Jeon SM, et al. Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract. Clin Chim Acta 2002, 317: 109-17.

Petlevski R, Hadzija M, Slijepcevic M, Juretic D, Petrik J. Glutathione S-transferase and malondialdehyde in the liver of NOD mice on short-term treatment with plant mixture extract P-980191. Phytother Res 2003; 17: 311-4.

Kim J, Noh K, Cho M, Jang J, Song Y. Anti-oxidative, anti-inflammatory and anti-atherogenic effects of dandelion (Taraxacum officinale) extracts in C57BL/6 mice fed atherogenic diet. FASEB J 2007; 21: 862.7.

Neef H, Cilli F, Declerck PJ, Laekeman G. Platelet antiaggregating activity of Taraxacum officinale Weber. Phytother Res 1996; 10: S138-S40.

Jeon HJ, Kang HJ, Jung HJ, Kang YS, Lim CJ, Kim YM, et al. Anti-inflammatory activity of Taraxacum officinale. J Ethnopharmacol 2008; 115: 82-8.

Kim HM, Shin HY, Lim KH, Ryu ST, Shin TY, Chae HJ, et al. Taraxacum officinale inhibits tumor necrosis factor alpha production from rat astrocytes. Immunopharmacol Immunotoxicol 2000; 22: 519-30.

Koo HN, Hong SH, Song BK, Kim CH, Yoo YH, Kim HM. Taraxacum officinale induces cytotoxicity through TNF-α and IL-1a secretion in Hep G2 cells. Life Sci 2004; 74: 1149-57.

Sigstedt SC, Hooten CJ, Callewaert MC, Jenkins AR, Romero AE, Pullin MJ, et al. Evaluation of aqueous extracts

of Taraxacum officinale on growth and invasion of breast and prostate cancer cells. Int J Oncol 2008; 32: 1085-90.

Trojanová I, Rada V, Kokoska L, Vlková E. The bifidogenic effect of Taraxacum officinale root. Fitoterapia 2004; 75: 760-3.

Schütz K, Muks E, Carle R, Schieber A. Separation and quantification of inulin in selected artichoke (Cynara scolymus L.) cultivars and dandelion (Taraxacum officinale WEB. ex WIGG.) roots by high-performance anion exchange chromatography with pulsed amperometric detection. Biomed Chromatogr 2006; 20: 1295-303.

Lattanzio V, Kroon PA, Linsalata V, Cardinali A. Globe artichoke: A functional food and source of nutraceutical ingredients. J Funct Foods 2009; 1: 131-44.

Shimoda H, Ninomiya K, Nishida N, Yoshino T, Morikawa T, Matsuda H, et al. Anti-hyperlipidemic sesquiterpenes and new sesquiterpene glycosides from the leaves of artichoke (Cynara scolymus L.): structure requirement and mode of action. Bioorg Med Chem Lett 2003; 13: 223-8.

Emendörfer F, Emendörfer F, Bellato F, Noldin VF, Cechinel-Filho V, Yunes RA, et al. Antispasmodic activity of fractions and cynaropicrin from Cynara scolymus on guinea-pig ileum. Biol Pharm Bull 2005; 28: 902-4.

Speroni E, Cervellati R, Govoni P, Guizzardi S, Renzulli C, Guerra MC. Efficacy of different Cynara scolymus preparations on liver complaints. J Ethnopharmacol 2003; 86: 203-11.

Rossoni G, Grande S, Galli C, Visioli F. Wild artichoke prevents the age-associated loss of vasomotor function. J Agric Food Chem 2005; 53: 10291-6.

Brown JE, Rice-Evans CA. Luteolin-rich artichoke extracts protects low density lipoproteins from oxidation in vitro. Free Radic Res 1998; 29: 247-55.

Jiménez-Escrig A, Dragsted LO, Daneshvar B, Pulido R, Saura-Calixto F. In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats. J Agric Food Chem 2003; 51: 5540-5.

Juzyszyn Z, Czerny B, Pawlik A, Droździk M. The effect of artichoke (Cynara scolymus L.) extract on ROS generation in HUVEC cells. Phytother Res 2008; 22: 1159-61.

Miccadei S, Di Venere D, Cardinali A, Romano F, Durazzo A, Foddai MS, et al. Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells. Nutr Cancer 2008; 60: 276-83.

Zapolska-Downar D, Zapolski-Downar A, Naruszewicz M, Siennicka A, Krasnodebska B, Kołdzie B. Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes. Life Sci 2002; 71: 2897-908.

Juzyszyn Z, Czerny B, Pawlik A, Drozdzik M. Effect of artichoke extract (Cynara scolymus L.) on palmitic-1-14C acid oxidation in rats. Mol Nutr Food Res 2008; 52: 589-94.

Fantini N, Colombo G, Giori A, Riva A, Morazzoni P, Bombardelli E, et al. Evidence of glycemia-lowering effect by a Cynara scolymus L. extract in normal and obese rats. Phytother Res 2011; 25: 463-6.

Li H, Xia N, Brausch I, Yao Y, Förstermann U. Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells. J Pharmacol Exp Ther 2004; 310: 926-32.

Bundy R, Walker AF, Middleton RW, Wallis C, Simpson HC. Artichoke leaf extract (Cynara scolymus) reduces plasma cholesterol in otherwise healthy hypercholesterolemic adults: a randomized, double blind placebo controlled trial. Phytomedicine 2008; 15: 668-75.

Rondanelli M, Giacosa A, Orsini F, Opizzi A, Villani S. Appetite control and glycaemia reduction in overweight subjects treated with a combination of two highly standardized extracts from phaseolus vulgaris and Cynara scolymus. Phytother Res 2011; doi: 10.1002/ptr.3425.

Costabile A, Kolida S, Klinder A, Gietl E, Bäuerlein M, Frohberg C, et al. A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. Br J Nutr 2010; 104: 1007-17.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2011 Marta González-Castejón , Arantxa Rodriguez-Casado Madrid