Vitamin A, Nutrition, and Health Values of Algae: Spirulina, Chlorella, and Dunaliella


functional foods

How to Cite

Tang, G., & Suter, . P. M. (2011). Vitamin A, Nutrition, and Health Values of Algae: Spirulina, Chlorella, and Dunaliella . Journal of Pharmacy and Nutrition Sciences, 1(2), 111–118.


Spirulina, chlorella, and dunalliella are unicellular algae that are commercially produced worldwide. These algae are concentrated sources of carotenoids (especially provitamin A carotenoids) and other nutrients, such as vitamin B12. Their health benefits as a complementary dietary source for macro and micro nutrients have been studied and confirmed in various populations. The safety of human consuming these algae and products derived from these algae by humans has been widely studied. It is generally concluded that these algae and its products are safe if cultivated properly in a non-contaminated environment, and if consumed in moderation.


Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes, and fermenters. J Biotech 1999; 70: 313-21.

Lee Y-K. Commercial production of microalgae in the Asia-Pacific rim. J Applied Phycology 1997; 9: 403-11.

Belay A. The potential application of spirulina (arthrospira) as a nutritional and therapeutic supplement in health management. J Am Nutriceutical Association 2002; 5: 27-48.

Gershwin ME, Belay A. Spirulina in human nutrition and health. CRC Press, Boca Raton, FL, USA, 2000.

Halidou DM, Degbey H, Daouda H, Leveque A, Donnen P, Hennart P, et al. The effect of spiruline during nutritional rehabilitation: systematic review. Rev. Epidemiol Sante Publique 2008; 56: 425-31. [Article in French] Source: Pédiatrie A, hôpital National de Niamey, BP 238, Niamey, Niger.

Ciferri O. Spirulina, the edible microorganism. Microbiological Reviews 1983; 47: 51-578.

Watanabe F, Takenaka S, Kittaka-Katsura H, Ebara S, Miyamoto E. Characterization and bioavailability of vitamin B12-compounds from edible algae. J Nutr Sci Vitaminol (Tokyo) 2002; 48: 325-31.

Watanabe F,Miyamoto E, Fujita T, Tanioka Y,Nakano Y. Characterization of corrinoid compound in the edible (blue-green) alga, suizenji-nori. Biosci Biotechnol Biochem 2006; 70: 3066-8.

Clément G, Giddey C. Amino acid composition and nutritive value of the alga spirulina maxima. J of the Science of Food and Agriculture 1967; 18: 497–501.

Becker EW. Micro-algae as a source of protein. Biotechnology Advance 2007; 25: 207-10.

Li D-M, Qi Y-Z. Spirulina industry in China: Present status and future prospects. J Appl Phycology 1997; 9: 25-8.

Simpore J, Zongo F, Kabore F, Dansou D, Bere A, Nikiema J-B, et al. 2005. Nutrition rehabilitation of HIV-infected and HIV-negative undernourished children utilizing spirulina. Ann Nutr Metab 2005; 49: 373-80.

Simpore J, Kabore F, Zongo F, Dansou D, Bere A, Pignatelli S, et al. Nutrition rehabilitation of undernourished children utilizing Spiruline and Misola. Nutrition Journal 2006; 5: 3.

Yeum KJ,Booth SL,Sadowski JA, Liu C, Tang G, Krinski NI, et al. 1996. Huamn plasma carotenoid response to the ingestion of controlled diets high in fruits and vegetables. Am J Clin Nutr 1996; 64: 594-602.

Goodwin TW. The biochemistry of carotenoids. London & New York: Chapman and Hall. 1980.

Earth Food Spirulina, Available from: EarthFoodSpirulina.pdf

Thinakar V, Edwin N. Spirulina - a nutrition booster. Study paper presented at the 7th World Congress on Clinical Nutrition, 14–17 October 1999, New Delhi, India (mimeo).

Razafiarisoa B, Ramaroson E, Ramampiherika D. 2004. Using spirulina platensis to reduce vitamin A deficiency in Malagasy children. International Vitamin A Consultative Group Meeting XXII, Lima, Peru. Abstract M20, Page 33, 2004.

Gireesh T, Jayadeep A, Rajasekharan KN, Menon VP, Vairamany M, Tang G, et al. Production of deuterated β-carotene by metabolic labelling of spirulina platensis. Biotech Letters. 2000; 23(6): 447-9.

Wang J, Wang Y, Wang Z, et al. 2008. Vitamin A equivalent of spirulina β-carotene in Chinese adults as assessed by stable isotope dilution and reference techniques. Am J Clin Nutr 2008; 87: 1730-7.

Park HJ, Lee YJ, Ryu HK, Kim MH, Chung HW, Kim WY A randomized double-blind, placebo-controlled study to establish the effects of spirulina in elderly Koreans. Ann Nutr Metab 2008; 52: 322-8.

Selmi C, Leung PSC, Fischer L, German B, Yang C-Y, Kenny TP, Cysewski GR,and Gershwin ME. The effects of spirulina on anemia and immune function in senior citizens. Cellular & Molecular Immunology 2011; 8: 248-54.

Yu B, Wang J, Suter PM, Russell RM, Grusak MA,Wang Y, et al. Spirulina is an effective dietary source of zeaxanthin to humans. Br J Nutr. 2011; in press.

Deng R, Chow TJ. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae spirulina. Cardiovasc Ther 2010; 28: e33-45.

FAO Fisheries and Aquaculture Circular C1034, A review on culture, production and use of spirulina as food for humans and feeds for domestic animals. 2009; Available from:


Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005; 438: 90-3.

Hirayam K, Maruyama I, and Maeda T. Nutritional effect of freshwater chlorella on growth of the rotifer Brachionus plicatili. Hydrobiologia 1989; 186/187: 39-42.

Nakano S, Takekoshi H, Nakano M. 2010. Chlorella pyrenoidosa supplementation reduces the risk of anemia, proteinuria and edema in pregnant women. Plant Foods Hum Nutr 2010; 65: 25-30.

Halperin SA, Smith B, Nolan C. Nolan C, Shay J, Kralovec J. Safety and immunoenhancing effect of a chlorella-derived dietary supplement in healthy adults undergoing influenza vaccination: randomized, double-blind, placebo-controlled trial. CMAJ 2003; 169: 111-7.

Merchant RE, Andre CA,Sica DA. 2002. Nutritional supplementation with chlorella pyrenoidosa for mild to moderate hypertension. J Medicinal Foo.2002; 5: 141-52.

Ben-Amotz A, Levy Y. Bioavailability of a natural isomer mixture compared with synthetic all-trans β-carotene in human serum. Am J Clin Nutr 1969; 63: 729-34.

Suzuki T, Nakashima M, Ohishi N. Kunio Y. A simple procedure for large-scale purification of 9-cis β-carotene from dunaliella bardawil. Biochem & Molecular Biology International 1996; 39: 1077-84.

Aasen AJ, Eimhjellen KE, Liaaen-Jensen S. An extreme source of β-carotene. Acta Chem Scand 1969; 23:2544-5.

Borowitzka MA. Microalgae as sources of pharmaceuticals and other biologically active compounds. J Applied Phycology 1995; 7: 3-15.

Cognis Nutrition and Health, 2009. Available from: Colours/Cognis-Mixed-Carotenoids-Product-Now-GRAS.html

Jiménez C,and. Pick U. Differential reactivity of β-carotene isomers from dunaliella. bardawil toward oxygen radicals. Plant Physiol 1993; 101: 385-90.

Fujii Y, Sakamoto S, Ben-Amotz A, Nagasawa H. Effects of β-carotene-rich algae dunaliella bardawil on the dynamic changes of normal and neoplastic mammary cells and general metabolism in mice. Anticancer Res 1993; 13: 389-93.

Nagasawa H, Fujii Y, Kageyama Y, Segawa T, Ben-Amotz A Suppression by β-carotene-rich algae dunaliella bardawil of the progression, but not the development, of spontaneous mammary tumours in SHN virgin mice. Anticancer Res 1991; 11: 713-7.

Levy Y, Zaltsberg H, Ben-Amotz A, Kanter Y, Aviram M. Dietary supplementation of a natural isomer mixture of β-carotene inhibits oxidation of LDL derived from patients with diabetes mellitus. Ann Nutr Metab 2000; 44: 54-60.

Lavy A, Naveh Y, Coleman R, Mokady S, Werman MJ.Dietary Dunaliella bardawil, a β-carotene-rich alga, protects against acetic acid-induced small bowel inflammation in rats. Inflamm Bowel Dis 2003; 9:372-9.

Shaish A,Harari A, Hananshvili L, Cohen H, Bitzur R, Luvish T, et al. 9-cis β-carotene-rich powder of the alga dunaliella bardawil increases plasma HDL-cholesterol in fibrate-treated patients. Atherosclerosis 2006; 189: 215-21.

Salazar M, Martinez E, Madrigal E, Ruiz - AFF3 LE, Chamorro GA. Subchronic toxicity study in mice fed spirulina maxima. J Ethnopharmacology 1998; 62: 235-41.

Final report, Preclinical toxicity of chlorella vulgaris E-25 acute and subacute studies in Fisher strain of rats. 2000. Available from:

Kuroiwa Y, Nishikawa A,Imazawat T, Kitamura Y, Kanki K, Ishii Y, et al. A subchronic toxicity study of dunaliella carotene in F344 rats. Food Chem Toxicol 2001; 44: 138-45.

Doshi H, Ray A, Kothariz IL. Biosorption of cadmium by live and dead spirulina: IR spectroscopic, kinetics, and SEM studies. Current Microbiology 2007; 54: 213-8.

Cain A, Vannel R, Woo LK. Cyanobacteria as a biosorbent for mercuric ion. Bioresource Technology 2008; 99: 6578-86.

Karadeniz A, Cemek M, Simsek N. The effects of Panax ginseng and spirulina platensis on hepatotoxicity induced by cadmium in rats. Ecotoxicology and Environmental Safety 2009; 72: 231-5.

Kim C-J, Jung Y-H, Ko S-R, Kim H-I, Park Y-H, Oh H-M. Raceway cultivation of spirulina platensis using underground water. J Microbiol Biotechnol 2007; 17: 853–7.

Mazokopakis EE, Karefilakis CM, Tsartsalis AN, Milkas AN, Ganotakis ES. Acute rhabdomyolysis caused by spirulina (Arthrospira platensis). Phytomedicine 2008; 15: 525-7.

Lu H-K, Hsieh C-C, Hsu J-J, Yang Y-K,Chou H-N. Preventive eVects of spirulina platensis on skeletal muscle damage under exercise-induced oxidative stress. Eur J Appl Physiol 2006; 98: 220–6.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2011 Guangwen Tang , Paolo M. Suter