Abstract
Lipids play diverse roles in sustaining life, including energy storage, hormonal balance, and cellular communication. Alterations in lipid metabolism can lead to various disorders, including diabetes, atherosclerosis, cancer, and neurodegenerative diseases. Among these disorders, lysosomal storage disorders (LSDs) related to glycosphingolipids metabolism present significant challenges. This review systematically analyzes the current literature on LSDs, focusing on classification, clinical presentations, diagnostic advancements, available treatments, and emerging therapeutic strategies. Glycosphingolipids biosynthesis, particularly its role in viral dissemination and melanin synthesis, underscores its significance in health and disease. Additionally, the review delves into specific LSDs, such as Fabry disease, Gaucher disease, Sandhoff disease, Tay-Sachs disease, and Krabbe disease, highlighting their pathophysiology, prevalence, and treatment options. Enzyme replacement therapy and hematopoietic stem cell transplantation are mainstays in LSD treatment, but gene therapy shows promise. Furthermore, the review explores the role of glycosphingolipids in non-communicable diseases like diabetes, cancer, atherosclerosis, lupus, Alzheimer's, Parkinson's disease, and influenza. Understanding glycosphingolipid metabolism offers insights into disease mechanisms and therapeutic targets, paving the way for improved treatments and ultimately enhancing patient outcomes.
References
Budani M, Auray-Blais C, Lingwood C. ATP-binding cassette transporters mediate differential biosynthesis of glycosphingolipid species. J Lipid Res 2021; 62. https://doi.org/10.1016/j.jlr.2021.100128
Natesan V, Kim SJ. Lipid metabolism, disorders and therapeutic drugs-review. Biomol Ther 2021; 29(6): 596. https://doi.org/10.4062/biomolther.2021.122
Rizzo R, Russo D, Kurokawa K, et al. Golgi maturation‐dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO J 2021; 40(8): e107238. https://doi.org/10.15252/embj.2020107238
Celi AB, Goldstein J, Rosato-Siri MV, et al. Role of globotriaosylceramide in physiology and pathology. Front Mol Biosci 2022; 9: 813637. https://doi.org/10.3389/fmolb.2022.813637
Lingwood CA, Branch DR. The role of glycosphingolipids in HIV/AIDS. Discov Med 2011; 11(59): 303-13.
Yamashita S, Kinoshita M, Miyazawa T. Dietary sphingolipids contribute to health via intestinal maintenance. International Journal of Molecular Sciences 2021; 22: 13: 7052.
Lingwood CA. Glycosphingolipid functions. Cold Spring Harb Perspect Biol 2011; 3(7): a004788. https://doi.org/10.1101/cshperspect.a004788
Langeveld M, Aerts JM. Glycosphingolipids and insulin resistance. Prog Lipid Res 2009; 48(3-4): 196-205. https://doi.org/10.1016/j.plipres.2009.03.002
Chatterjee S, Bedja D, Mishra S, et al. Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E−/− mice and rabbits fed a high-fat and-cholesterol diet. Circulation 2014; 129(23): 2403-13. https://doi.org/10.1161/CIRCULATIONAHA.113.007559
McDonald G, Deepak S, Miguel L, et al. Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients. J Clin Invest 2014; 124(2): 712-24. https://doi.org/10.1172/JCI69571
Karman J, Tedstone JL, Gumlaw NK, et al. Reducing glycosphingolipid biosynthesis in airway cells partially ameliorates disease manifestations in a mouse model of asthma. Int Immunol 2010; 22(7): 593-603. https://doi.org/10.1093/intimm/dxq044
Prinetti A, Prioni S, Loberto N, et al. Aberrant Glycosphingolipid Expression and Membrane Organization in Tumor Cells: Consequences on Tumor-Host Interactions. In: The Molecular Immunology of Complex Carbohydrates-3. Springer 2011; pp. 643-67. https://doi.org/10.1007/978-1-4419-7877-6_34
Uddin MB, Roy KR, Hosain SB, et al. An N6-methyladenosine at the transited codon 273 of p53 pre-mRNA promotes the expression of R273H mutant protein and drug resistance of cancer cells. Biochem Pharmacol 2019; 160: 134-45. https://doi.org/10.1016/j.bcp.2018.12.014
Liu YY. Glucosylceramide synthase, a factor in modulating drug resistance, is overexpressed in metastatic breast carcinoma. Int J Oncol [Internet] 2011 May 23 [cited 2024 Jan 27]. https://doi.org/10.3892/ijo.2011.1052
Bedja D, Yan W, Lad V, et al. Inhibition of glycosphingolipid synthesis reverses skin inflammation and hair loss in ApoE−/− mice fed western diet. Sci Rep 2018; 8(1): 11463. https://doi.org/10.1038/s41598-018-28663-9
Grabowski GA. Phenotype, diagnosis, and treatment of Gaucher’s disease. The Lancet 2008; 372(9645): 1263-71. https://doi.org/10.1016/S0140-6736(08)61522-6
Sheth J, Nair A, Jee B. Lysosomal storage disorders: from biology to the clinic with reference to India. Lancet Reg Health-Southeast Asia 2023; 9. https://doi.org/10.1016/j.lansea.2022.100108
Bradbury AM, Bongarzone ER, Sands MS. Krabbe disease: New hope for an old disease. Neurosci Lett 2021; 752: 135841. https://doi.org/10.1016/j.neulet.2021.135841
Sprong H, Degroote S, Claessens T, et al. Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J Cell Biol 2001; 155(3): 369-80. https://doi.org/10.1083/jcb.200106104
Nagueh SF. Anderson-Fabry disease and other lysosomal storage disorders. Circulation.2014; 130(13): 108190. https://doi.org/10.1161/CIRCULATIONAHA.114.009789
Platt FM, d’Azzo A, Davidson BL, et al. Lysosomal storage diseases. Nat Rev Dis Primer 2018; 4(1): 27. https://doi.org/10.1038/s41572-018-0025-4
Ballabio A, Gieselmann V. Lysosomal disorders: from storage to cellular damage. Biochim Biophys Acta BBA-Mol Cell Res 2009; 1793(4): 684-96. https://doi.org/10.1016/j.bbamcr.2008.12.001
Tuttolomondo A, Baglio I, Riolo R, et al. Molecular Pathogenesis of Central and Peripheral Nervous System Complications in Anderson-Fabry Disease. Int J Mol Sci [Internet] 2023 [cited 2024 Jan 27]; 25(1): 61. Available from: https://www.mdpi.com/1422-0067/25/1/61
Do HS, Park SW, Im I, et al. Enhanced thrombospondin-1 causes dysfunction of vascular endothelial cells derived from Fabry disease-induced pluripotent stem cells. EBioMedicine 2020; 52. https://doi.org/10.1016/j.ebiom.2020.102633
Bichet DG, Aerts JM, Auray-Blais C, et al. Assessment of plasma lyso-Gb3 for clinical monitoring of treatment response in migalastat-treated patients with Fabry disease. Genet Med 2021; 23(1): 192-201. https://doi.org/10.1038/s41436-020-00968-z
Umer M, Kalra DK. Treatment of Fabry Disease: Established and Emerging Therapies. Pharmaceuticals 2023; 16(2): 320. https://doi.org/10.3390/ph16020320
Mehta A, Beck M, Linhart A, et al. History of lysosomal storage diseases: an overview. Fabry Dis Perspect 5 Years FOS 2006.
Nampoothiri S, Yesodharan D, Bhattacherjee A, et al. Fabry disease in India: A multicenter study of the clinical and mutation spectrum in 54 patients. JIMD Rep 2020; 56(1): 82-94. https://doi.org/10.1002/jmd2.12156
Bodamer OA, Ratschmann R, Paschke E, et al. Recurrent acroparaesthesia during febrile infections. The Lancet 2004; 363(9422): 1698. https://doi.org/10.1016/S0140-6736(04)16254-5
Tóth GD, Koplányi G, et al. Nanoformulation of Therapeutic Enzymes: A Short Review. Periodica Polytechnica Chemical Engineering 2023. https://doi.org/10.3311/PPch.22826
Xu R, Mistry P, Mckenna G, Emre S, Fiel MI, Schiano T, et al. Hepatocellular carcinoma in type 1 Gaucher disease: a case report with review of the literature. In: Seminars in liver disease. Copyright© 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New 2005; pp. 226-9. https://doi.org/10.1055/s-2005-871201
Xiaojie B, Yanxia Z, Lirong S, et al. Research progress on the pathogenesis, diagnosis and treatment of bone damage in Gaucher disease [J]. Advances in Clinical Medicine 2023, 13(4): 5680-5685. https://doi.org/10.12677/ACM.2023.134802
Belmatoug N, Di Rocco M, Fraga C, et al. Management and monitoring recommendations for the use of eliglustat in adults with type 1 Gaucher disease in Europe. Eur J Intern Med 2017; 37: 25-32. https://doi.org/10.1016/j.ejim.2016.07.011
Prisila E, Majdawati A. Gaucher’s Disease: A Case Report. Ahmad Dahlan Med J 2023; 4(1): 30-41.
Hughes DA, Pastores GM. Eliglustat for Gaucher’s disease: trippingly on the tongue. The Lancet 2015; 385(9985): 2328-30. https://doi.org/10.1016/S0140-6736(15)60206-9
Shaimardanova AA, Solovyeva VV, Issa SS, et al. Gene Therapy of Sphingolipid Metabolic Disorders. Int J Mol Sci 2023; 24(4): 3627. https://doi.org/10.3390/ijms24043627
McNulty MA, Prevatt PB, Nussbaum ER, et al. Abnormal epiphyseal development in a feline model of Sandhoff disease. J Orthop Res 2020; 38(12): 2580-91. https://doi.org/10.1002/jor.24803
Fernandes Filho JA, Shapiro BE. Tay-sachs disease. Arch Neurol 2004; 61(9): 1466-8. https://doi.org/10.1001/archneur.61.9.1466
Pandey MK. Exploring Pro-Inflammatory Immunological Mediators: Unraveling the Mechanisms of Neuroinflammation in Lysosomal Storage Diseases. Biomedicines 2023; 11(4): 1067. https://doi.org/10.3390/biomedicines11041067
Tavasoli AR, Parvaneh N, Ashrafi MR, et al. Clinical presentation and outcome in infantile Sandhoff disease: a case series of 25 patients from Iranian neurometabolic bioregistry with five novel mutations. Orphanet J Rare Dis 2018; 13(1): 1-8. https://doi.org/10.1186/s13023-018-0876-5
Shaimardanova AA, Chulpanova DS, Solovyeva VV, et al. Increasing β-hexosaminidase A activity using genetically modified mesenchymal stem cells. Neural Regen Res 2024; 19(1): 212-9. https://doi.org/10.4103/1673-5374.375328
Rafi MA, Luzi P, Wenger DA. Conditions for combining gene therapy with bone marrow transplantation in murine Krabbe disease. BioImpacts BI 2020; 10(2): 105. https://doi.org/10.34172/bi.2020.13
Yoon IC, Bascou NA, Poe MD, et al. Long-term neurodevelopmental outcomes of hematopoietic stem cell transplantation for late-infantile Krabbe disease. Blood J Am Soc Hematol 2021; 137(13): 1719-30. https://doi.org/10.1182/blood.2020005477
Jain M, De Jesus O. Krabbe disease 2020.
Lahr A, Williams L, Henderson N, et al. Overview of Newborn Screening of Lysosomal Storage Diseases for Pediatric Care Providers. OBM Genet 2023; 7(3): 1-12. https://doi.org/10.21926/obm.genet.2303194
Zimmet PZ, Magliano DJ, Herman WH, et al. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol 2014; 2(1): 56-64. https://doi.org/10.1016/S2213-8587(13)70112-8
Marrano N, Biondi G, Borrelli A, et al. Type 2 diabetes and Alzheimer’s disease: the emerging role of cellular lipotoxicity. Biomolecules 2023; 13(1): 183. https://doi.org/10.3390/biom13010183
Mei M, Liu M, Mei Y,et al. Sphingolipid metabolism in brain insulin resistance and neurological diseases. Front Endocrinol 2023; 14. https://doi.org/10.3389/fendo.2023.1243132
Tatti P, Singh P. Insulin Resistance: An Unresolved Riddle. J Clin Med 2023; 12(19): 6394. https://doi.org/10.3390/jcm12196394
Chornenkyy Y, Wang WX, Wei A, et al. Alzheimer’s disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline. Brain Pathol 2019; 29(1): 3-17. https://doi.org/10.1111/bpa.12655
Mathur G, Nain S, Sharma PK. Cancer: an overview. Acad J Cancer Res 2015; 8(1). https://doi.org/10.5829/idosi.ajcr.2015.8.1.9336
Ho MY, Yu AL, Yu J. Glycosphingolipid dynamics in human embryonic stem cell and cancer: their characterization and biomedical implications. Glycoconj J 2017; 34: 765-77. https://doi.org/10.1007/s10719-016-9715-x
Burlutskaya AV, Tril VE, Polischuk LV, et al. Dyslipidemia in pediatrician’s practice. Rev Cardiovasc Med 2021; 22(3): 817-34. https://doi.org/10.31083/j.rcm2203088
Luca AC, David SG, David AG, et al. Atherosclerosis from Newborn to Adult—Epidemiology, Pathological Aspects, and Risk Factors. Life 2023; 13(10): 2056. https://doi.org/10.3390/life13102056
De Geest B, Mishra M. New Perspectives on Cholesterol and Lipoprotein Metabolism. Vol. 24, International Journal of Molecular Sciences. MDPI 2023. https://doi.org/10.3390/ijms241411298
Katsel P, Li C, Haroutunian V. Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease? Neurochem Res 2007; 32: 845-56. https://doi.org/10.1007/s11064-007-9297-x
Moulton VR, Tsokos GC. Abnormalities of T cell signaling in systemic lupus erythematosus. Arthritis Res Ther 2011; 13: 1-10. https://doi.org/10.1186/ar3251
Aghili M, Poorbahman Z, Babaee E. Comparing the effectiveness of acceptance and commitment-based therapy and compassion-focused therapy on basic psychological needs, maladaptive magnification, and stress coping strategies in patients with lupus. Psychol Achiev 2023. https://doi.org/10.22055/psy.2023.44152.3069
Jury EC, Flores-Borja F, Kabouridis PS. Lipid rafts in T cell signalling and disease. In: Seminars in cell & developmental biology. Elsevier 2007; pp. 608-15. https://doi.org/10.1016/j.semcdb.2007.08.002
Harden OC, Hammad SM. Sphingolipids and diagnosis, prognosis, and organ damage in systemic lupus erythematosus. Frontiers in Immunology 2020; 11: 586737. https://doi.org/10.3389/fimmu.2020.586737
Duarte AI, Candeias E, Correia SC, et al. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochim Biophys Acta BBA-Mol Basis Dis 2013; 1832(4): 527-41. https://doi.org/10.1016/j.bbadis.2013.01.008
Tong M, Dong M, de la Monte SM. Brain insulin-like growth factor and neurotrophin resistance in Parkinson’s disease and dementia with Lewy bodies: potential role of manganese neurotoxicity. J Alzheimers Dis 2009; 16(3): 585-99. https://doi.org/10.3233/JAD-2009-0995
Huang Q, Chen C, Chen W, et al. Cell type-and region-specific translatomes in an MPTP mouse model of Parkinson’s disease. Neurobiol Dis 2023; 180: 106105. https://doi.org/10.1016/j.nbd.2023.106105
Arnold SE, Arvanitakis Z, Macauley-Rambach SL, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 2018; 14(3): 168-81. https://doi.org/10.1038/nrneurol.2017.185
Zhou Y, Pu J, Wu Y. The role of lipid metabolism in influenza A virus infection. Pathogens [Internet] 2021 [cited 2023 Dec 10]; 10(3): 303. https://doi.org/10.3390/pathogens10030303
Avota E, Bodem J, Chithelen J, et al. The manifold roles of sphingolipids in viral infections. Front Physiol 2021; 12: 715527. https://doi.org/10.3389/fphys.2021.715527
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.