Baccharoides lasiopus: Review of its Medicinal uses, Phytochemistry and Pharmacological Properties

Alfred Maroyi

Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa

Abstract: Baccharoides lasiopus is a woody shrub widely used as traditional medicine throughout its distributional range in tropical Africa. This study is aimed at providing a critical review of the pharmacological properties, phytochemistry, and medicinal uses of B. lasiopus. Documented information on the pharmacological properties, phytochemistry, and medicinal uses of B. lasiopus was collected from several online sources, which included Scopus, Google Scholar, PubMed and Science, and pre-electronic sources such as book chapters, books, journal articles and scientific publications obtained from the university library. The articles published between 1971 and 2020 were used in this study. This study showed that the leaves, roots, stems, whole plant parts, root and stem bark of B. lasiopus are widely used as galactagogue, purgative and anthelmintic, and traditional medicine for headache, liver diseases, skin diseases, respiratory infections, malaria, augment labour, convulsions, epilepsy, fainting, female reproductive problems, and gastro-intestinal problems. Phytochemical compounds identified from the species include elemanolide type sesquiterpene lactones, alkaloids, anthraquinones, cardiac glycosides, coumarins, flavonoids, phenolics, reducing sugars, saponins, steroids, tannins, terpenoids, and xanthines. Pharmacological research revealed that B. lasiopus extracts and compounds isolated from the species have anthelmintic, antibacterial, antifungal, antiviral, anti-hyperglycaemic, antiplasmodial, antimalarial, antiprotozoal, haematological, hepatoprotective, hepatotoxicity, larvicidal, and cytotoxicity activities. Future research on B. lasiopus should focus on the possible biochemical mechanisms of action of both the crude extracts and identified phytochemical compounds including toxicological, in vivo, and clinical studies to corroborate the traditional medical applications of the species.

Keywords: Asteraceae, Compositae, Baccharoides lasiopus, indigenous knowledge, traditional medicine, Vernonia lasiopus.

INTRODUCTION

Baccharoides lasiopus (O. Hoffm.) H. Rob. is a woody shrub belonging to the Asteraceae or Compositae family. This species was originally treated under the genus Vernonia Schreb. [1], a genus that is now known to be restricted to North America [2]. The genus name Baccharoides was first proposed by Moench in 1793 and remained unused until it was resurrected by Robinson in 1990 [2,3]. Synonyms associated with the name B. lasiopus include Vernonia albo-violacea De Wild., V. braunii Muschler, V. brownii S. Moore, V. dumatica S. Moore, V. iodocalyx O. Hoffm., V. kaessneri S. Moore, V. lasiopus O. Hoffm., V. massaiensis S. Moore, V. mokaensis Milbr., V. ringoetti De Wild., V. ruwenzoriensis S. Moore, V. saltuarii S. Moore and V. tuberculata Hutch. & Burtt. [4]. Baccharoides lasiopus is a woody herb or semi-climbing shrub that reaches 4 metres in height [5]. The bark of the species is smooth and greyish brown in colour. The leaves of B. lasiopus are densely hairy, ovate to lanceolate in shape with toothed margins. The flower heads of the species are terminal, generally crowded with flowers that are pale mauve to white in colour. The species has been recorded in disturbed areas, bushland, grassland and riverine woodland or forest at an altitude ranging from 1000 m to 2500 m above sea level [5]. The fruit is a tiny dry nutlet achene with white hairs at one end. Baccharoides lasiopus has been recorded in Angola, Burundi, the Democratic Republic of Congo (DRC), Ethiopia, Kenya, Mozambique, Rwanda, South Sudan, Sudan, Tanzania, Uganda and Zambia [4,6]. Baccharoides lasiopus is considered to be a weed in some regions of Kenya because it can colonize disturbed land and cultivated areas. In Kenya, the leaves of B. lasiopus are used in making soap, the species is sometimes grown from seed, wildings and cuttings along field boundaries for use as fodder and for medicine [5]. Baccharoides lasiopus is one of the most used traditional medicines in Kenya and the species is traded in informal herbal medicine markets in that country [7]. It is, therefore, within this context that the current study was undertaken, aimed at documenting the pharmacological properties, phytochemistry and medicinal uses of B. lasiopus.

Medicinal uses

The different parts of B. lasiopus are widely used as galactagogue, purgative and anthelmintic, and traditional medicine for headache, liver diseases, skin
diseases, respiratory infections, malaria, augment labour, convulsions, epilepsy, fainting, female reproductive problems and gastro-intestinal problems (Table 1; Figure 1). Other important medicinal applications of *B. lasiopus* that are supported by at least two literature sources include the use leaves as aphrodisiac in Tanzania [8,9], leaves and roots against colic pain in Uganda [10,11], and leaves, and stems as ethnoveterinary medicine in Kenya [12-14].

Table 1: Medicinal uses of *Baccharoides lasiopus*

<table>
<thead>
<tr>
<th>Medicinal use</th>
<th>Parts used</th>
<th>Country</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthelmintic</td>
<td>Leaves, roots and stems</td>
<td>DRC, Kenya, Rwanda and Uganda</td>
<td>[4,10-12,15-19]</td>
</tr>
<tr>
<td>Aphrodisiac</td>
<td>Leaves</td>
<td>Tanzania</td>
<td>[8,9]</td>
</tr>
<tr>
<td>Augment labour and postpartum pains</td>
<td>Leaves and roots</td>
<td>Kenya, Tanzania and Uganda</td>
<td>[4,16,20]</td>
</tr>
<tr>
<td>Back pains</td>
<td>Leaves</td>
<td>Kenya</td>
<td>[16]</td>
</tr>
<tr>
<td>Colic pain</td>
<td>Leaves and roots</td>
<td>Uganda</td>
<td>[10,11]</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>Stem bark</td>
<td>Kenya</td>
<td>[21]</td>
</tr>
<tr>
<td>Convulsions, epilepsy and fainting</td>
<td>Leaves, stem bark and whole plant</td>
<td>DRC, Tanzania and Uganda</td>
<td>[4,22,23]</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Leaves</td>
<td>Kenya</td>
<td>[19]</td>
</tr>
<tr>
<td>Female reproductive problems (fertility, menstruation and prevent abortion)</td>
<td>Leaves, roots and stem bark</td>
<td>DRC, Kenya, Tanzania and Uganda</td>
<td>[8,19,22,24,25]</td>
</tr>
<tr>
<td>Galactagogue</td>
<td>Leaves and roots</td>
<td>DRC and Tanzania</td>
<td>[22,24]</td>
</tr>
<tr>
<td>Gastro-intestinal disorders (abdominal pains, constipation, diarrhoea, indigestion and stomachache)</td>
<td>Leaves and roots</td>
<td>Kenya, Rwanda, Tanzania and Uganda</td>
<td>[4,8-11,15,16,18,20,26-32]</td>
</tr>
<tr>
<td>Headache</td>
<td>Leaves, roots and stem bark</td>
<td>DRC and Uganda</td>
<td>[20,22]</td>
</tr>
<tr>
<td>Heart burn</td>
<td>Leaves and roots</td>
<td>Kenya</td>
<td>[33]</td>
</tr>
<tr>
<td>Hemorrhoids</td>
<td>Leaves and stem bark</td>
<td>DRC</td>
<td>[22]</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Leaves and roots</td>
<td>Uganda</td>
<td>[11]</td>
</tr>
<tr>
<td>Liver diseases</td>
<td>Leaves</td>
<td>Kenya and Rwanda</td>
<td>[18,30,34]</td>
</tr>
<tr>
<td>Malaria</td>
<td>Bark, leaves and roots</td>
<td>Kenya and Uganda</td>
<td>[9,11,15,17,19,20,28-30,35-38]</td>
</tr>
<tr>
<td>Otitis media</td>
<td>Flowers</td>
<td>Kenya</td>
<td>[39]</td>
</tr>
<tr>
<td>Pre-hepatic jaundice</td>
<td>Leaves</td>
<td>Uganda</td>
<td>[23]</td>
</tr>
<tr>
<td>Purgative</td>
<td>Leaves and roots</td>
<td>Kenya and Tanzania</td>
<td>[4,9,28]</td>
</tr>
<tr>
<td>Respiratory infections (colds, cough and pneumonia)</td>
<td>Bark, leaves and roots</td>
<td>Kenya and Uganda</td>
<td>[10,11,17,20,39,40]</td>
</tr>
<tr>
<td>Skin diseases (measles, pimples, scabies and rashes)</td>
<td>Leaves and stem bark</td>
<td>DRC and Kenya</td>
<td>[16,22,41]</td>
</tr>
<tr>
<td>Sores</td>
<td>Stem bark</td>
<td>Rwanda</td>
<td>[4]</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>Leaves and roots</td>
<td>Uganda</td>
<td>[11]</td>
</tr>
<tr>
<td>Toothache</td>
<td>Leaves and stem bark</td>
<td>DRC</td>
<td>[22]</td>
</tr>
<tr>
<td>Typhoid</td>
<td>Roots</td>
<td>Kenya</td>
<td>[42]</td>
</tr>
<tr>
<td>Ethnoveterinary medicine (ectoparasites and worms)</td>
<td>Leaves and stems</td>
<td>Kenya</td>
<td>[12-14]</td>
</tr>
</tbody>
</table>

Phytochemistry

Koul *et al.* [43] identified two elemanolide type sesquiterpene lactones, epivernodal, and lasiopulide from the aerial parts of *B. lasiopus*. Similarly, Kimani *et al.* [44,45] identified six elemanolide type sesquiterpene lactones, such as 8-desacylvernonolide, vernolepin, vernomenin, vernodal, vernodal and 11,13-dihydrovernodalin, from the aerial parts of *B. lasiopus*.
Other phytochemical compounds identified from the leaves, roots and stem bark of *B. lasiopus* include alkaloids, anthraquinones, cardiac glycosides, coumarins, flavonoids, phenolics, reducing sugars, saponins, steroids, tannins, terpenoids, and xanthisines [8,12,18,31,46-55]. Some of these phytochemical compounds identified from the species may be responsible for the biological activities of the species.

Pharmacological Properties

The following biological activities have been reported from the aerial parts, leaves, roots, stems, root bark, and stem bark of *B. lasiopus* and compounds isolated from the species: anthelmintic, antibacterial, antifungal, antiviral, antihyperglycemic, antimalarial and antimalarial, antiprotozoal, haematological, hepatoprotective, hepatotoxicity, larvicidal and cytotoxicity activities.

Anthelmintic Activities

Njonge *et al.* [12] evaluated the anthelmintic activities of aqueous extracts of *B. lasiopus* leaves using the *in vitro* anthelmintic assay against the gastrointestinal nematode infective larvae of *Haemonchus*, *Mecistocirrus*, *Ostertagia*, *Trichostongylus*, *Cooperia*, *Bunostomum* and *Oesophagostomum* species. The extract exhibited moderate anthelmintic activities [12].

Antibacterial Activities

Karera *et al.* [56] evaluated the antibacterial activities of aqueous extracts of leaves and stems of *B. lasiopus* against *Bacillus subtilis*, *Escherichia coli* and *Staphylococcus aureus* using the disc-agar diffusion method with tetracycline (100.0 µg), streptomycin (25.0 µg), sulphamethoxazole (200.0 µg), cotrimoxazole (25.0 µg) and gentamicin (10.0 µg) as positive controls. The extracts exhibited activities against *Escherichia coli* and *Bacillus subtilis* with the zone of inhibition of 6.5 mm and 13.2 mm, respectively, in comparison to the zone of inhibition of 12.0 mm to 24.0 mm exhibited by the positive control [56]. Rachuonyo *et al.* [49] evaluated the antibacterial activities of crude leaf extracts of *B. lasiopus*, and leaves of *B. lasiopus* combined with those of *Aloe secundiflora* Engl., *Bulbine frutescens* (L.) Willd. and *Tagetes minuta* L. against *Shigella flexineri*, *Salmonella typhi*, *Escherichia coli*, *Enterococcus faecalis* and *Staphylococcus aureus* using the disc agar diffusion and micro dilution methods with ciprofloxacin and vancomycin as positive controls. The extract exhibited activities with the zone of inhibition values ranging from 12.0 mm to 18.2 mm and the minimum bactericidal concentration (MBC) values ranging from 5.0 mg/ml to 14.2 mg/ml [49]. Rachuonyo *et al.* [50] evaluated the antibacterial activities of methanol leaf extracts of *B. lasiopus* against *Staphylococcus aureus* using the disc agar diffusion and micro dilution methods with ciprofloxacin (5.0 µg/ml) and vancomycin (3.0 µg/ml) as positive controls. The extract exhibited activities against the pathogen with minimum inhibitory concentration (MIC), the MBC and the zone of inhibition values of 12.2 mg/ml, 14.2 mg/ml and 14.0 mm, respectively [50]. Rachuonyo *et al.* [51] evaluated the antibacterial activities of methanol leaf extracts of *B. lasiopus*...
against *Escherichia coli* using the disc agar diffusion and micro dilution methods with ciprofloxacin as a positive control. The extract exhibited activities against the pathogen with the MIC, MBC and zone of inhibition values of 10.0 mg/ml, 11.5 mg/ml and 12.0 mm, respectively [51]. Rachuonyo et al. [52] evaluated the antibacterial activities of crude leaf extracts of *B. lasiopus* against *Enterococcus faecalis* using the disc agar diffusion method with ciprofloxacin (5 µg/ml) as a positive control. The extract exhibited activities against the pathogen with the zone of inhibition of 18.0 mm against 21.7 mm exhibited by the control [52]. Rachuonyo et al. [53] evaluated the antibacterial activities of methanol leaf extracts of *B. lasiopus* against *Salmonella typhi* using the disc agar diffusion and micro dilution methods with ciprofloxacin as a positive control. The extract exhibited activities against the pathogen with the MIC, MBC and zone of inhibition values of 5.6 mg/ml, 7.5 mg/ml and 13.0 mm, respectively [53]. Mutembei et al. [55] evaluated the antibacterial activities of aqueous extracts of *B. lasiopus* leaves against *Pseudomonas aeruginosa*, *Escherichia coli*, *Bacillus subtilis* and *Staphylococcus aureus* using the disc agar diffusion method with benzathine penicillin and streptomycin as positive controls. The extract exhibited activities against *Pseudomonas aeruginosa* and *Escherichia coli* with the zone of inhibition of 9.0 mm and 10.5 mm, respectively, while the zone of inhibition exhibited by the controls ranged from 11.5 mm to 52.6 mm [55].

Antifungal Activities

Vlietinck et al. [57] evaluated the antifungal activities of crude extracts of *B. lasiopus* leaves and stems against *Microsporum canis* and *Trichophyton mentagrophytes* using the agar diffusion method with nystatin (1000 µg/ml) as a positive control. The extracts exhibited moderate activities against the tested pathogens [57]. Rachuonyo et al. [48] evaluated the antifungal activities of crude leaf extracts of *B. lasiopus* against *Candida albicans* using the agar diffusion and micro dilution methods with fluconazole (15.0 µg/ml) as a positive control. The extract exhibited activities against the fungus with the MIC, minimum fungicidal concentration (MFC) and zone of inhibition values of 4.0 mg/ml, 5.5 mg/ml and 20.0 mm, respectively [48]. Rachuonyo et al. [49] evaluated the antifungal activities of crude leaf extracts of *B. lasiopus*, and the leaves of *B. lasiopus* combined with those of *Aloe secundiflora*, *Bulbine frutescens* and *Tagetes minuta* against *Candida albicans* using the agar diffusion and micro dilution methods with fluconazole (15.0 µg/ml) as a positive control. The extract exhibited activities against the fungus with the zone of inhibition ranging from 13.0 mm to 20.0 mm and the MFC value of 5.5 mg/ml [49].

Antiviral Activities

Vlietinck et al. [57] evaluated the antiviral activities of crude extracts of *B. lasiopus* leaves and stems against herpes simplex, poliomyelitis, measles, coxsackie and Semliki forest using the 50.0% end point titration technique. The extracts exhibited moderate activities against the tested pathogens [57].

Antihyperglycemic Activities

Kimani et al. [54] evaluated antihyperglycemic activities of aqueous leaf extract of *B. lasiopus* in alloxan-induced diabetic male albino mice with insulin and glibenclamide treated mice for intraperitoneal and oral routes respectively as positive controls. The extract at 25.0, 48.4, 93.5, 180.9 and 350.0 mg/kg body weight demonstrated antihyperglycemic activities in a dose independent manner [54].

Antiplasmodial and Antimalarial Activities

Muregi et al. [58] evaluated the antiplasmodial activities of water, hexane, chloroform, ethyl acetate and methanol extracts of *B. lasiopus* leaves against chloroquine sensitive and resistant *Plasmodium falciparum* using the semi-automated micro-dilution technique that measures the ability of the extracts to inhibit the incorporation of (G-3H) hypoxanthine into the malaria parasite. The chloroform, ethyl acetate and methanol extracts exhibited the best activities with half maximal inhibitory concentration (IC50) values ranging from 1.0 µg/ml to 3.6 µg/ml. Combination of chloroform, ethyl acetate and methanol extracts with chloroquine against the multi-drug resistant *Plasmodium falciparum* isolate revealed some synergistic effects [58]. Irungu et al. [59] evaluated the antiplasmodial activities of aqueous, dichloromethane and methanol extracts of the root bark of *B. lasiopus* against two strains of *Plasmodium falciparum* (K1 chloroquine resistant and NF54 chloroquine sensitive) using the [G-3H] hypoxanthine incorporation assay with chloroquine as a positive control. The dichloromethane extract exhibited the highest activities with the IC50 values of 4.7 µg/ml and 4.9 µg/ml against K1 and NF54, respectively [59]. Muthaura et al. [60] evaluated the antiplasmodial activities of methanol extracts of *B. lasiopus* leaves against the chloroquine sensitive (D6) and resistant (W2) *Plasmodium falciparum* using the semi-automated micro-dilution technique that measures the
ability of the extracts to inhibit the incorporation of \((G^{-3}\text{H})\) hypoxanthine into the malaria parasite. The extract exhibited weak activities with the IC\(_{50}\) values of 44.3 µg/ml and 52.4 µg/ml against D6 and W2, respectively [60]. Njenga et al. [61] evaluated the antiplasmodial activities of crude and dichloromethane: chloroform extracts of \(B.\ lasiopus\) aerial parts and roots against the chloroquine sensitive (D6) and resistant (W2) \(P.\ falciparum\) using the semi-automated micro-dilution technique that measures the ability of the extracts to inhibit the incorporation of \((G^{-3}\text{H})\) hypoxanthine into the malaria parasite. The extracts exhibited weak activities with the IC\(_{50}\) values ranging from 11.2 µg/ml to 68.8 µg/ml [61]. Kimani et al. [44] evaluated the antiplasmodial activities of n-hexane, dichloromethane, ethyl acetate, n-butanol, methanol and water extracts of aerial parts of \(B.\ lasiopus\) using the \((G^{-3}\text{H})\) hypoxanthine incorporation assay against the chloroquine and pyrimethamine sensitive and resistant strains of \(P.\ falciparum\) with chloroquine as a positive control. The organic extracts exhibited the best activities with the IC\(_{50}\) values ranging from 1.1 µg/ml to 27.0 µg/ml [61]. Kimani et al. [44] also evaluated the \(in\ vitr/o\) antitrypanosomal activities of the compounds 8-desacylvernodalin, vernolepin, vernomenin, vernodalol and mixture of vernodal and 11,13-dihydrovernodalin (2:1) isolated from the aerial parts of \(B.\ lasiopus\) against \(T.\ brucei\ rhodesiense\) using Almar Blue and resazurin assay with melarsoprol as a positive control. The compounds exhibited activities with the IC\(_{50}\) values ranging from 0.05 µM to 0.8 µM [44]. Kimani et al. [45] evaluated the \(in\ vitr/o\) antitrypanosomal activities of the compounds 8-desacylvernodalin, vernolepin, vernomenin, vernodalol and mixture of vernodal and 11,13-dihydrovernodalin (2:1) isolated from the aerial parts of \(B.\ lasiopus\) against \(T.\ brucei\ rhodesiense\) using Almar Blue and resazurin assay with melarsoprol as a positive control. The compounds exhibited activities with the IC\(_{50}\) values ranging from 0.07 µM to 9.8 µM [45].

Haematological Activities

Njagi et al. [46] evaluated the haematological activities of methanol extracts of \(B.\ lasiopus\) in normal male Swiss albino mice at a concentration of 50 mg/kg and 100 mg/kg administered orally once per two days for 14 days. The extract induced changes in erythrocytes, total and differential white blood cell counts, platelets, induced immunostimulatory activities and thrombopoietin stimulation [46].

Hepatoprotective Activities

Mukazayire et al. [18] evaluated the hepatoprotective activities of the aqueous extract of \(B.\ lasiopus\) leaves tested on CCl\(_4\)-treated guinea pigs by the method of barbiturate-induced sleep modification. The extract allowed animals to recover barbiturate sleep duration in proportions of 34.1% [18].

Hepatotoxicity Activities

Mukazayire et al. [18] evaluated the hepatotoxicity activities of dried methanol extracts of \(B.\ lasiopus\) leaves tested \(in\ vitr/o\) on rat precision cut liver slices for protection against acetaminophen-induced hepatotoxicity with N-acetyl cysteine as a reference hepatoprotective agent. The extract was found to be hepatotoxic by itself showing a reduction in ATP levels by 88.3%, and was unable to prevent acetaminophen toxicity [18].

Larvicidal Activities

Tarwish et al. [31] evaluated the larvicidal activities of hexane, chloroform, ethyl acetate, acetone,
methanol and water extracts of *B. lasiopus* leaves and roots against the third instar larvae of malaria vector *Anopheles gambiae*. All the extracts, with the exception of water extracts, exhibited activities with the ethyl acetate extract of the roots exhibiting the median lethal concentration (LC$_{50}$) value of 205.9 ppm [31].

Cytotoxicity Activities

Koul *et al.* [43] evaluated the cytotoxicity activities of the compounds epivernodalin and lasiopulide isolated from the aerial parts of *B. lasiopus* against the human cancer cell lines HCT-15, HT-29, SiHa and T47-D using the sulforhodamine B assay with 5-fluorouracil and adriamycin as positive controls. The compounds exhibited activities with the IC$_{50}$ values ranging from 6.5 µM to 109.8 µM [43]. Njenga *et al.* [61] evaluated cytotoxicity activities of crude and dichloromethane: chloroform extracts of *B. lasiopus* aerial parts and roots on Vero 199 cells at starting concentrations of 100.0 µg/ml using (3-(4,5-dimethylthiazolyl)-2)-2,5-diphenyltetrazolium bromide) MTT colorimetric assay. The extracts exhibited weak activities with the median cytotoxic concentration (CC$_{50}$) values ranging from 19.2 µg/ml to >100.0 µg/ml [61]. Kimani *et al.* [44] evaluated the cytotoxicity activities of dichloromethane and ethyl acetate extracts of the aerial parts of *B. lasiopus* against the rat skeletal myoblast L6 cells with podophyllotoxin as a reference drug. The dichloromethane and ethyl acetate extracts exhibited activities with the IC$_{50}$ values of 0.8 µg/mL and 4.8 µg/mL, respectively, which were higher than the IC$_{50}$ value of 0.007 µg/mL exhibited by the control. Kimani *et al.* [44] also evaluated the cytotoxicity activities of the compounds 8-desacylvernonilide, vernolepin, vernomenin, vernodalol and mixture of vernodalin and 11,13-dihydrovernodalin (2:1) isolated from the aerial parts of *B. lasiopus* against the rat skeletal myoblast L6 cells with podophyllotoxin as a reference drug. The compounds exhibited activities with IC$_{50}$ values ranging from 0.5 µM to 10.7 µM [44]. Kimani *et al.* [45] evaluated the cytotoxicity activities of the compounds 8-desacylvernonilide, vernolepin, vernomenin, vernodalol and mixture of vernodalin and 11,13-dihydrovernodalin (2:1) isolated from the aerial parts of *B. lasiopus* against the rat skeletal myoblast L6 cells with podophyllotoxin as a reference drug. The compounds exhibited activities with the IC$_{50}$ values ranging from 0.5 µM to 34.6 µM [45].

CONCLUSION

Different parts of *B. lasiopus* are used traditionally as galactagogue, purgative and anthelmintic, and traditional medicine for headache, liver diseases, skin diseases, respiratory infections, malaria, augment labour, convulsions, epilepsy, fainting, female reproductive problems, and gastro-intestinal problems. This study revealed nthanks to bacterial, antifungal, antiviral, antihyperglycemic, antiplasmodial, antimalarial, antiprotocoal, haematological, hepatoprotective, hepatotoxicity, larvicidal, and cytotoxicity activities of crude extracts and compounds isolated from the species. Therefore, future research should focus on pharmacokinetics, mechanism of action and structure activity relationship studies of isolated pure compounds, toxicological studies, *in vivo* and clinical studies.

CONFLICT OF INTEREST

No conflict of interest is associated with this work.

REFERENCES

[12] Njongo FK, et al. Assessment of herbal anthelmintics used by the farmers in Kirinyaga county, Kenya, for the treatment
https://doi.org/10.5897/AJPP2013.3511

https://doi.org/10.1016/S0378-8741(00)00180-X

https://doi.org/10.4314/alcam.v4i1.31193

https://doi.org/10.1016/j.etp.2009.04.005

https://doi.org/10.5667/tang.2016.0007

https://doi.org/10.1186/s13002-015-0077-4

https://doi.org/10.1016/j.jep.2014.09.003

https://doi.org/10.1016/S0367-326X(00)00294-X

https://doi.org/10.1016/j.jep.2007.07.014

https://doi.org/10.1016/0378-8741(82)90070-8

https://doi.org/10.1111/j.1365-2028.2007.00735.x

https://doi.org/10.1111/j.1365-2028.2007.00740.x

https://doi.org/10.1016/j.jep.2014.05.060

https://doi.org/10.17348/era.12.0.627-641

https://doi.org/10.13057/bonorow/v070207

https://doi.org/10.1016/j.sajb.2007.03.004

https://doi.org/10.1016/j.jep.2012.11.028

https://doi.org/10.1016/j.jep.2011.09.025

https://doi.org/10.1111/j.1365-2028.2007.00737.x

https://doi.org/10.1016/j.sajb.2007.03.004

https://doi.org/10.1016/j.jep.2011.05.002

https://doi.org/10.32859/era.19.04.1

https://doi.org/10.1186/1746-4269-2-54

https://doi.org/10.1016/j.jep.2006.11.025

https://doi.org/10.4314/alcam.v8i5S.20

https://doi.org/10.3390/molecules22040597

https://doi.org/10.1055/s-0037-1608192

https://doi.org/10.4172/2167-0412.1000277

Received on 15-07-2020 Published on 15-10-2020

DOI: https://doi.org/10.29169/1927-5951.2020.10.05.5

© 2020 Alfred Maroyi; Licensee SET Publisher.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.