Structural and Dielectric Properties of Ba-Doped BNT Ceramics
PDF

Keywords

X-ray diffraction
BNT
Ceramics
Dielectric
Ac-conductivity

How to Cite

Thapa, K., Thankur, P., Sharma, N., Sharma, S., Ali, A., Zaman, A., & Lal, M. (2022). Structural and Dielectric Properties of Ba-Doped BNT Ceramics. Journal of Basic & Applied Sciences, 18, 47–57. https://doi.org/10.29169/1927-5129.2022.18.06

Abstract

In this study, lead-free Ba-doped ((Bi(0.5)Na0.5)TiO3 ceramics were synthesized by the conventional solid-state reaction method and characterized by X-ray diffraction technique, which indicates the pure crystalline nature of ceramics with ABO3 symmetry. The splitting in the peaks reveals that the ceramics with x = 0.10 and 0.30 are well in Morphotrophic Phase Boundary where rhombohedral and tetragonal phases co-exist. The scanning electron microscope images show that the average grain size of the ceramics increases with an increase in the Ba concentration. Dielectric properties of pure and Ba-doped ((Bi(0.5)Na0.5)TiO3ceramics measured by LCR meter in the frequency range of 1 k Hz – 1 M Hz shows the decrease in the value of dielectric constant with an increase in frequency. εmax = 5563 was obtained at x = 0.30 with TC = 300 °C at the frequency of 1 k Hz, whereas σ (f) curves were found to be merging at a high value of frequency and temperature regions.

https://doi.org/10.29169/1927-5129.2022.18.06
PDF

References

Liu X, Yin J, Wu J. A new class of ion substitution to achieve high electrostrain under low electric field in BNT‐based ceramics. Journal of the American Ceramic Society 2021. https://doi.org/10.1111/jace.18008

Zheng T, et al. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy & Environmental Science 2017; 10(2): 528-537. https://doi.org/10.1039/C6EE03597C

Somlenski G, Agramovaskaya A. Dielectric polarization of a number of complex compounds. Sov Phys Solid State 1960; 1(10): 1429-1437.

Dai YJ, Pan JS, Zhang XW. Composition range of morphotropic phase boundary and electrical properties of NBT-BT system in Key Engineering Materials. Trans Tech Publ 2007. https://doi.org/10.4028/0-87849-410-3.206

Yang Z, et al. Structure and electrical properties of (1− x) Bi0. 5Na0. 5TiO3–xBi0. 5K0. 5TiO3 ceramics near morphotropic phase boundary. Materials Research Bulletin 2008; 43(1): 81-89. https://doi.org/10.1016/j.materresbull.2007.02.016

Wang X, Chan HLW, Choy CL. (Bi1/2Na1/2) TiO3–Ba (Cu1/2W1/2) O3 Lead‐Free Piezoelectric Ceramics. Journal of the American Ceramic Society 2003; 86(10): 1809-1811. https://doi.org/10.1111/j.1151-2916.2003.tb03562.x

Yan F, et al. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Materials 2020; 30: 392-400. https://doi.org/10.1016/j.ensm.2020.05.026

Yoneda Y, Noguchi Y. Nanoscale structural analysis of Bi0. 5Na0. 5TiO3. Japanese Journal of Applied Physics 2020; 59(SP): SPPA01. https://doi.org/10.35848/1347-4065/aba2c2

Suchanicz J, et al. Dielectric and structural relaxation phenomena in Na0. 5Bi0. 5TiO3 single crystal. Phase Transitions: A Multinational Journal 1996; 57(4): 173-182. https://doi.org/10.1080/01411599608208744

Shi J, et al. Bi deficiencies induced high permittivity in lead-free BNBT–BST high-temperature dielectrics. Journal of Alloys and Compounds 2015; 627: 463-467. https://doi.org/10.1016/j.jallcom.2014.12.022

Yu Y, et al. Room temperature ferroelectricity in donor-acceptor co-doped TiO2 ceramics using doping-engineering. Acta Materialia 2018; 150: 173-181. https://doi.org/10.1016/j.actamat.2018.03.016

Dittmer R, et al. A High‐Temperature‐Capacitor Dielectric Based on K 0.5 Na 0.5 NbO 3‐Modified Bi 1/2 Na 1/2 TiO 3–Bi 1/2 K 1/2 TiO 3. Journal of the American Ceramic Society 2012; 95(11): 3519-3524. https://doi.org/10.1111/j.1551-2916.2012.05321.x

Li M, et al. Donor-doping and reduced leakage current in Nb-doped Na0. 5Bi0. 5TiO3. Applied Physics Letters 2015; 106(10): 102904. https://doi.org/10.1063/1.4914509

Yang F, et al. Defect chemistry and electrical properties of sodium bismuth titanate perovskite. Journal of Materials Chemistry A 2018; 6(13): 5243-5254. https://doi.org/10.1039/C7TA09245H

Takenaka T, Nagata H. Current status and prospects of lead-free piezoelectric ceramics. Journal of the European Ceramic Society 2005; 25(12): 2693-2700. https://doi.org/10.1016/j.jeurceramsoc.2005.03.125

Li M, et al. A family of oxide ion conductors based on the ferroelectric perovskite Na 0.5 Bi 0.5 TiO 3. Nature Materials 2014; 13(1): 31-35. https://doi.org/10.1038/nmat3782

Zheng T, et al. Recent development in lead-free perovskite piezoelectric bulk materials. Progress in Materials Science 2018; 98: 552-624. https://doi.org/10.1016/j.pmatsci.2018.06.002

Hong Y-H, et al. High electromechanical strain properties by the existence of nonergodicity in LiNbO3–modified Bi1/2Na1/2TiO3–SrTiO3 relaxor ceramics. Ceramics International 2018; 44(17): 21138-21144. https://doi.org/10.1016/j.ceramint.2018.08.156

Xie H, et al. Structure, dielectric, ferroelectric, and field-induced strain response properties of (Mg1/3Nb2/3) 4+ complex-ion modified Bi0. 5 (Na0. 82K0. 18) 0.5 TiO3 lead-free ceramics. Journal of Alloys and Compounds 2018; 743: 73-82. https://doi.org/10.1016/j.jallcom.2018.01.367

Yan B, et al. Giant electro-strain and enhanced energy storage performance of (Y0. 5Ta0. 5) 4+ co-doped 0.94 (Bi0. 5Na0. 5) TiO3-0.06 BaTiO3 lead-free ceramics. Ceramics International 2020; 46(1): 281-288. https://doi.org/10.1016/j.ceramint.2019.08.261

Takenaka T, Okuda T, Takegahara K. Lead-free piezoelectric ceramics based on (Bi1/2Na1/2) TiO3-NaNbO3. Ferroelectrics 1997; 196(1): 175-178. https://doi.org/10.1080/00150199708224156

Fu P, et al. Effect of Dy2O3 on the structure and electrical properties of (Bi0. 5Na0. 5) 0.94 Ba0. 06TiO3 lead-free piezoelectric ceramics. Journal of Alloys and Compounds 2010; 508(2): 546-553. https://doi.org/10.1016/j.jallcom.2010.08.117

Rawat M, et al. Structural, dielectric and conductivity properties of Ba2+ doped (Bi0. 5Na0. 5) TiO3 ceramic. Advanced Materials Letters 2012; 3(4): 286-292. https://doi.org/10.5185/amlett.2012.2322

Lin Y, et al. Effects of doping Eu2O3 on the phase transformation and piezoelectric properties of Na0. 5Bi0. 5TiO3-based ceramics. Materials Science and Engineering: B 2003; 99(1-3): 449-452. https://doi.org/10.1016/S0921-5107(02)00465-8

Herabut A, Safari A. Processing and electromechanical properties of (Bi0. 5Na0. 5)(1− 1.5 x) LaxTiO3 ceramics. Journal of the American Ceramic Society 1997; 80(11): 2954-2958. https://doi.org/10.1111/j.1151-2916.1997.tb03219.x

Lee J-K, et al. Phase transitions and dielectric properties in A-site ion substituted (Na 1/2 Bi 1/2) TiO 3 ceramics (A= Pb and Sr). J Appl Phys 2002; 91(7): 4538-4542. https://doi.org/10.1063/1.1435415

Nagata H, et al. Correlation between depolarization temperature and lattice distortion in quenched (Bi 1/2 Na 1/2) TiO 3-based ceramics. Appl Phys Express 2020. https://doi.org/10.35848/1882-0786/ab8c1d

Guerra J, et al. Room temperature antiferroelectric-phase stability in BNT-BT lead-free ceramics. Physica B: Condensed Matter 2017; 525: 114-118. https://doi.org/10.1016/j.physb.2017.09.014

Lal M, et al. Structural, Dielectric and Impedance Studies of KNNS–BKT Ceramics. Am J Mater Sci 2017; 7(2): 25-34.

Suryanarayana C, Norton MG. X-ray diffraction: a practical approach. Springer Science & Business Media 2013.

Pal V, Dwivedi R, Thakur O. Synthesis and ferroelectric behavior of Gd doped BNT ceramics. Curr Appl Phys 2014; 14(1): 99-107. https://doi.org/10.1016/j.cap.2013.10.007

Goel P, Yadav K. Substitution site effect on structural and dielectric properties of La–Bi modified PZT. J Mater Sci 2007; 42(11): 3928-3935. https://doi.org/10.1007/s10853-006-0416-x

Yang C, et al. Effect of Ba doping on magnetic and dielectric properties of nanocrystalline BiFeO3 at room temperature. Journal of Alloys and Compounds 2010; 507(1): 29-32. https://doi.org/10.1016/j.jallcom.2010.07.193

Pattipaka S, Bora S, Pamu D. Structural, Electrical, and AC-Resistivity Studies of BNT-KN Piezoelectric Ceramics. Ferroelectrics 2020; 557(1): 28-42. https://doi.org/10.1080/00150193.2020.1713360

Kumar P, Kar M. Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. Journal of Alloys and Compounds 2014; 584: 566-572. https://doi.org/10.1016/j.jallcom.2013.09.107

Mehrotra P, Chatterjee B, Sen S. EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing. Sensors 2019; 19(5): 1013. https://doi.org/10.3390/s19051013

Zhu C, et al. High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties. J Mater Chem A 2020; 8(2): 683-692. https://doi.org/10.1039/C9TA10347C

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.