Abstract
This paper introduces the neutrosophic -statistical convergent difference sequence spaces defined through a modulus function. Additionally, we establish new topological spaces and examine various topological properties within these neutrosophic -statistical convergent difference sequence spaces.
References
Saadati R, Park JH. Intuitionistic fuzzy euclidean normed spaces. Commun Math Anal 2006; 1(2): 85-90.
Samarandache F. Neutrosophic set-ageneralization of the intuitionistic fuzzy set. Inter J Pure Appl Math 2005; 24(3): 287-297.
Zadeh LA. Fuzzy sets. Inf Control 1965; 8(3): 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
Ademola AS, Adebisi SA. Fuzzy Soft Sets and its Application to Decision Making: A Short Case Study Involving the Health Sector. J Basic Appl SciJournal of Basic & Applied Sciences 2024; 20: 105-118. https://doi.org/10.29169/1927-5129.2024.20.11
Bera T, Mahapatra NK. On neutrosophic soft linear space. Fuzzy Inf Eng 2017; 9(3): 299-324. https://doi.org/10.1016/j.fiae.2017.09.004
Bera T, Mahapatra NK. Neutrosophic soft normed linear spaces. Neutrosophic Sets Syst 2018; 23(1): 1-6.
Fast H. Sur la convergence statistique. Colloq Math 1951; 2(3-4): 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
Mursaleen M, Edely OHH. Statistical convergence of double sequences. J Math Anal Appl 2003; 288(1): 223-231. https://doi.org/10.1016/j.jmaa.2003.08.004
Tripathy BC. Statistically convergent double sequences. Tamkang J Math 2003; 34(3): 231-237. https://doi.org/10.5556/j.tkjm.34.2003.314
Das P, Kostyrko P, Wilczynski W, Malik P.ℐ and ℐ*-convergence of double sequences. Math Slovaca 2008; 58(5): 605-620. https://doi.org/10.2478/s12175-008-0096-x
Dündar E, Altay B.I_2-convergenceand I_2-Cauchy double sequences. Acta Math Sci 2014; 34(2): 343-353. https://doi.org/10.1016/S0252-9602(14)60009-6
Gürdal M, Huban MB. On I-convergence of double sequences in the topology induced by random 2-norms. Mat Vesnik 2014; 66(1): 73-83.
Gürdal M, Şahiner A. Extremal I-limit points of double sequences. Appl Math E-Notes 2008; 88: 131-137.
Huban MB, Gürdal M. Wijsman lacunary invariant statistical convergence for triple sequences via Orlicz function. J Classical. Anal 2021; 17(2): 119-128.
http://dx.doi.org/10.7153/jca-2021-17-08
Savaş E, Gürdal M. Generalized statistically convergent sequences of functions in fuzzy 2-normed spaces. J Intell Fuzzy Systems 2014; 27(4): 2067-2075. https://doi.org/10.3233/JIFS-141172
Savaş E, Gürdal M.Ideal convergent function sequences in random 2-normed spaces. Filomat 2016; 230(3): 557-567. https://doi.org/10.2298/FIL1603557S
Savaş E, Das P. A generalized statistical convergence via ideals. Appl Math Lett 2011; 24(6): 826-830. https://doi.org/10.1016/j.aml.2010.12.022
Kirişci M, Şimşek N, Neutrosophic normed spaces and statistical convergence. J Anal 2020; 28: 1059-1073. https://doi.org/10.1007/s41478-020-00234-0
Kişi Ö. Ideal convergence of sequences in neutrosophic normed spaces. J Intell Fuzzy Syst 2021; 41(2): 2581-2590. https://doi.org/10.3233/JIFS-201568
Kişi Ö.Convergence methods for double sequences and applications in neutrosophic normed spaces. Soft Computing Techniques in Engineering, Health, Mathematical and Social Sciences, CRC Press, Taylor & Francis Group 2021. https://doi.org/10.1201/9781003161707-9
Kizmaz C. On certain sequence spaces. Canad Math Bull 1981; 24(2): 169-176. https://doi.org/10.4153/CMB-1981-027-5
Bektaş ÇA, Et M, Çolak R. Generalized difference sequence spaces and their dual spaces. J Math Anal Appl 2004; 292(2): 423-432. https://doi.org/10.1016/j.jmaa.2003.12.006
Çolak R, Et M. On some generalized difference sequence spaces and related matrix transformation. Hokkaido Math J 1997; 26(3): 483-492. https://doi.org/10.14492/hokmj/1351258261
Çolak R, Altınok H, Et M. Generalized difference sequences of fuzzy numbers. Chaos Soliton Fract 2009; 40(3): 1106-1117. https://doi.org/10.1016/j.chaos.2007.08.065
Et M, Çolak R. On some generalized difference sequence spaces. Soochow J Math 1995; 21(4): 377-386.
Nakano H. Concave modulars. J Math Soc Japan 1953; 5(2): 29-49. https://doi.org/10.2969/jmsj/00510029
Gürdal M. Some types of convergence, Doctoral Dissertation, Süleyman Demirel University, 2004.
Kostyrko P, Wilczynski W, Salat T. I-convergence. Real Anal. Exchange 2000; 26(2): 669-686. https://doi.org/10.2307/44154069
Khan VA, Arshad M. On neutrosophic normed spaces of I-convergence difference sequences defined by modulus function. Neutrosophic Sets Syst 2024; 73: 178-190.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.