Case Study: Long-Term Monitoring of Health Biomarkers after Drinking Structured Water Over 43 Months
PDF

Keywords

Structured Water
Biomarkers
Resting Energy Expenditure
Resilience
Resting Heart Rate
Percent Blood Oxygen
Water Respiration
Elderly Dehydration
Age-Related Diseases

How to Cite

Ramsey, C. (2024). Case Study: Long-Term Monitoring of Health Biomarkers after Drinking Structured Water Over 43 Months. Journal of Basic & Applied Sciences, 20, 151–181. https://doi.org/10.29169/1927-5129.2024.20.16

Abstract

This case study presents a three-year monitoring of personal biomarkers before and after drinking structured water for a single subject. The five biomarkers were specifically chosen to assess the long-term effects of structured water (SW) on overall health status. The biomarker results show that Resting Energy Expenditure (REE) decreased by 18.3 %, and resting oxygen consumption rate (VO2) decreased by 21.6% after 43 months of drinking SW water. The positive changes in the five biomarkers suggest that SW water effectively replenished and maintained BSW water levels in the subject. Furthermore, the improved biomarker results indicate that drinking SW water significantly reduced the additional stress of relying solely on aerobic respiration to meet all cellular energy needs. Replenishing BSW water levels by drinking SW water could potentially reverse dehydration and aging health issues.

https://doi.org/10.29169/1927-5129.2024.20.16
PDF

References

Ramsey CL. Biologically Structured Water (BSW)-A Review (Part 1): Structured Water (SW) Properties, BSW and Redox Biology, BSW and Bioenergetics. Journal of Basic & Applied Sciences 2023; 19: 174-201. https://doi.org/10.29169/1927-5129.2023.19.15

Ramsey CL. Biologically Structured Water (BSW)-A Review (Part 2): Redoxbiology, SW Water and Plants, SW Drinking Water Types, BSW Water and Aging, BSW Water and Immunity. Journal of Basic & Applied Sciences 2023; 19: 202-229. https://doi.org/10.29169/1927-5129.2023.19.17

Ramsey CL. Biologically Structured Water (BSW)-A Review (Part 3): Structured Water (SW) Generation, BSW Water, Bioenergetics, Consciousness and Coherence. Journal of Basic & Applied Sciences 2023; 19: 230-48. https://doi.org/10.29169/1927-5129.2023.19.18

Ho MW Illuminating water and life: Emilio Del Giudice Electromagnetic biology and medicine 2015; 34(2): 113-22. https://doi.org/10.3109/15368378.2015.1036079

Ho MW Living rainbow H2O World Scientific; 2012. https://doi.org/10.1142/9789814390903

Messori C, Prinzera SV, di Bardone FB 2019b The super-coherent state of biological water Open Access Library Journal 6(02): 1. https://doi.org/10.4236/oalib.1105236

Jerman I The origin of life from quantum vacuum, water and polar molecules American Journal of Modern Physics 2016; 5(4-1): 34-43.

Scirè A A mesoscopic model for the collective dynamics of water coherence domains arXiv preprint arXiv: 2004.07545 2020 Apr 16.

Geesink HJ, Jerman I, Meijer DK. Water, the cradle of life via its coherent quantum frequencies Water 2020; 11: 78-108.

Marchettini N, Del Giudice E, Voeikov V, Tiezzi E. Water: A medium where dissipative structures are produced by a coherent dynamics Journal of Theoretical Biology 2010; 265(4): 511-6. https://doi.org/10.1016/j.jtbi.2010.05.021

Del Giudice E, Voeikov V, Tedeschi A, Vitiello G. The origin and the special role of coherent water in living systems Fields of the Cell 2015: 95-111.

Del Giudice E, Tedeschi A, Vitiello G, Voeikov V. Coherent structures in liquid water close to hydrophilic surfaces Journal of Physics: Conference Series 2013 Jun 10 (Vol. 442, No. 1, p. 012028) IOP Publishing. https://doi.org/10.1088/1742-6596/442/1/012028

Giudice ED, Spinetti PR, Tedeschi A. Water dynamics at the root of metamorphosis in living organisms Water 2010; 2(3): 566-86. https://doi.org/10.3390/w2030566

Giudice ED, Tedeschi A. Water and autocatalysis in living matter Electromagnetic Biology and Medicine 2009; 28(1): 46-52. https://doi.org/10.1080/15368370802708728

Bono I, Del Giudice E, Gamberale L, Henry M. Emergence of the coherent structure of liquid water Water 2012; 4(3): 510-32. https://doi.org/10.3390/w4030510

Czerlinski G, Ryba R. Trevor Coherence domains in living systems J. Vortex Sci. Technol 2015; 2: 110. https://doi.org/10.4172/2090-8369.1000110

Chaplin MF Water's hydrogen bond strength Water and Life: The unique properties of H2O 2007: 69-86. https://doi.org/10.1201/EBK1439803561-c5

Tao Y, Zou W, Jia J, Li W, Cremer D. Different ways of hydrogen bonding in water does warm water freeze faster than cold water? Journal of chemical theory and computation 2017; 13(1): 55-76. https://doi.org/10.1021/acs.jctc.6b00735

Chen B, Ivanov I, Klein ML, Parrinello M. Hydrogen bonding in water Physical Review Letters 2003; 91(21): 215503. https://doi.org/10.1103/PhysRevLett.91.215503

Brini E, Fennell CJ, Fernandez-Serra M, Hribar-Lee B, Luksic M, Dill KA. How water’s properties are encoded in its molecular structure and energies Chemical reviews 2017; 117(19): 12385-414. https://doi.org/10.1021/acs.chemrev.7b00259

Cai R, Yang H, He J, Zhu W The effects of magnetic fields on water molecular hydrogen bonds Journal of Molecular Structure 2009; 938(1-3): 15-9. https://doi.org/10.1016/j.molstruc.2009.08.037

Chang KT, Weng CI The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation Journal of Applied Physics 2006; 100(4): 043917. https://doi.org/10.1063/1.2335971

Alkorta I, Rozas I, Elguero J. Non-conventional hydrogen bonds. Chemical Society Reviews. 1998; 27(2): 163-70. https://doi.org/10.1039/a827163z

Mandumpal JB. A Journey Through Water: A Scientific Exploration of The Most Anomalous Liquid on Earth. Bentham Science Publishers; 2017 Mar 1.

Custodis F, Reil JC, Laufs U, Böhm M. Heart rate: a global target for cardiovascular disease and therapy along the cardiovascular disease continuum. Journal of cardiology 2013; 62(3): 183-7 https://doi.org/10.1016/j.jjcc.2013.02.018

Tverdal A, Hjellvik V, Selmer R. Heart rate and mortality from cardiovascular causes: a 12-year follow-up study of 379 843 men and women aged 40-45 years. European heart journal 2008; 29(22): 2772-81. https://doi.org/10.1093/eurheartj/ehn435

Zhang GQ, Zhang W. Heart rate, lifespan, and mortality risk. Ageing research reviews 2009; 8(1): 52-60. https://doi.org/10.1016/j.arr.2008.10.001

Lorenzo I, Serra-Prat M, Yébenes JC. The role of water homeostasis in muscle function and frailty: a review. Nutrients 2019; 11(8): 1857. https://doi.org/10.3390/nu11081857

Kerch G. Role of changes in state of bound water and tissue stiffness in development of age-related diseases. Polymers 2020; 12(6): 1362. https://doi.org/10.3390/polym1206136

Kerch G. Distribution of tightly and loosely bound water in biological macromolecules and age-related diseases. International journal of biological macromolecules 2018; 118: 1310-8. https://doi.org/10.1016/j.ijbiomac.2018.06.187

Jéquier E, Constant F. Water as an essential nutrient: the physiological basis of hydration. European journal of clinical nutrition 2010; 64(2): 115-23. https://doi.org/10.1038/ejcn.2009.111

Bedogni G, Borghi A, Battistini N. Body water distribution and disease. Acta Diabetologia 2003; 40. https://doi.org/10.1007/s00592-003-0065-3

Lavizzo-Mourey RJ. Dehydration in the elderly: a short review. Journal of the National Medical Association. 1987; 79(10): 1033.

Hooper L, Bunn D, Jimoh FO, Fairweather-Tait SJ. Water-loss dehydration and aging. Mechanisms of Ageing and Development 2014; 136: 50-8. Ignatov I, Mosin OV. Hydrogen Bonds among Molecules in Liquid and Solid State of Water. Modifications of Ice Crystals. Journal of Health, Medicine and Nursing 2014; 5: 56-79. https://doi.org/10.1016/j.mad.2013.11.009

Heart Recover Rate. https://www.healthcentral.com/fitness-and-exercise/how-to-calculate-heart-rate-recovery-after-exercise

Sydó N, Sydó T, Gonzalez Carta KA, Hussain N, Farooq S, Murphy JG, Merkely B, Lopez‐Jimenez F, Allison TG. Prognostic performance of heart rate recovery on an exercise test in a primary prevention population. Journal of the American Heart Association 2018; 7(7): e008143. https://doi.org/10.1161/JAHA.117.008143

Morshedi-Meibodi A, Larson MG, Levy D, O’Donnell CJ, Vasan RS. Heart rate recovery after treadmill exercise testing and risk of cardiovascular disease events (The Framingham Heart Study). The American journal of cardiology 2002; 90(8): 848-52. https://doi.org/10.1016/S0002-9149(02)02706-6

van de Vegte YJ, van der Harst P, Verweij N. Heart rate recovery 10 seconds after cessation of exercise predicts death. Journal of the American Heart Association 2018; 7(8): e008341. https://doi.org/10.1161/JAHA.117.008341

Pittaras AM, Faselis C, Doumas M, Myers J, Kheirbek R, Kokkinos JP, Tsimploulis A, Aiken M, Kokkinos P. Heart rate at rest, exercise capacity, and mortality risk in veterans. The American Journal of Cardiology 2013; 112(10): 1605-9. https://doi.org/10.1016/j.amjcard.2013.07.042

Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. Nutrition. 1990; 6: 213-21.

Stanford personal body temperature. https://normaltemperature.stanford.edu/

Cosinuss website. https://www.cosinuss.com/en/measured-data/vital-signs/oxygen-saturation/

Chan ED, Chan MM, Chan MM. Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations. Respiratory medicine 2013; 107(6): 789-99. https://doi.org/10.1016/j.rmed.2013.02.004

Oxygen conversion. https://www.quora.com/How-many-oxygen-molecules-are-present-in-1ml-of-oxygen

Messori C, Prinzera SV, di Bardone FB. The super-coherent state of biological water Open Access Library Journal 2019b; 6(02): 1. https://doi.org/10.4236/oalib.1105236

Yablonskaya O, Voeikov V, Buravleva E, Trofimov A, Novikov K. Physicochemical effects of humid air treated with infrared radiation on aqueous solutions Water 2021; 13(10): 1370. https://doi.org/10.3390/w13101370

Ramsey CL. Application of a structured water generator for crop irrigation: Structured water, drought tolerance, and alteration of plant defense mechanisms to abiotic stressors J Basic Appl Sci 2021; 17: 127-52 Abstract: A greenhouse study was conducted to enhance drought tolerance in velvet bean plants. https://doi.org/10.29169/1927-5129.2021.17.14

Ramsey C, Freebury PC, Newman DH, Schweigkofler W, Cseke LJ, Newman SE. Use of Foliar Chemical Treatments to Induce Disease Resistance in Rhododendrons Inoculated with Phytophthora ramorum.

Artemov VG, Uykur E, Kapralov PO, Kiselev A, Stevenson K, Ouerdane H, Dressel M. Anomalously high proton conduction of interfacial water The Journal of Physical Chemistry Letters 2020; 11(9): 3623-8. https://doi.org/10.1021/acs.jpclett.0c00910

Human cells. https://www.livescience.com/health/anatomy/ how-many-cells-are-in-the-human-body-new-study-provides-an-answer#: ~: text=According%20to%20a%20new%20 analysis,children%20have%20about%2017%20trillion

Tuszynski JA. From quantum chemistry to quantum biology: A path toward consciousness. Journal of Integrative Neuroscience 2020; 19(4): 687-700. https://doi.org/10.31083/j.jin.2020.04.393

Renati P. Electrodynamic coherence as a bio-chemical and physical basis for emergence of perception, semantics, and adaptation in living systems. https://doi.org/10.20944/preprints202011.0686.v1

Madl P, Renati P. Quantum Electrodynamics Coherence and Hormesis: Foundations of Quantum Biology. International Journal of Molecular Sciences 2023; 24(18): 14003. https://doi.org/10.3390/ijms241814003

Geesink HJ, Jerman I, Meijer DK. Water, the cradle of life via its coherent quantum frequencies. Water 2020; 11: 78-108.

Oschman JL. Functional role of quantum coherence in interfacial water. Proc Nat Acad Sci USA 2000; 97(7): 3183. https://doi.org/10.1073/pnas.97.7.3183

Stekhin A, Yakovleva G, Pronko K, Zemskov V. Quantum biophysics of water. Clin. Pract 2018; 15(3): 579-86. https://doi.org/10.4172/clinical-practice.1000393

Kim Y, Bertagna F, D’souza EM, Heyes DJ, Johannissen LO, Nery ET, Pantelias A, Sanchez-Pedreño Jimenez A, Slocombe L, Spencer MG, Al-Khalili J. Quantum biology: An update and perspective. Quantum Reports 2021; 3(1): 80-126. https://doi.org/10.3390/quantum3010006

Broman ME, Vincent JL, Ronco C, Hansson F, Bell M. The relationship between heart rate and body temperature in critically Ill patients. Critical Care Medicine 2021; 49(3): e327-31. https://doi.org/10.1097/CCM.0000000000004807

Heal C, Harvey A, Brown S, Rowland AG, Roland D. The association between temperature, heart rate, and respiratory rate in children aged under 16 years attending urgent and emergency care settings. European Journal of Emergency Medicine 2022; 29(6): 413. https://doi.org/10.1097/MEJ.0000000000000951

Ruetenik A, Barrientos A. Dietary restriction, mitochondrial function and aging: from yeast to humans. Biochimica et Biophysica Acta (BBA)-Bioenergetics 2015; 1847(11): 1434-47. https://doi.org/10.1016/j.bbabio.2015.05.005

Wickens AP. Aging and the free radical theory. Respiration physiology 2001; 128(3): 379-91. https://doi.org/10.1016/S0034-5687(01)00313-9

Speakman JR. Body size, energy metabolism and lifespan. Journal of Experimental Biology 2005; 208(9): 1717-30. https://doi.org/10.1242/jeb.01556

Speakman JR, Selman C, McLaren JS, Harper EJ. Living fast, dying when? The link between aging and energetics. The Journal of nutrition 2002; 132(6): 1583S-97S. https://doi.org/10.1093/jn/132.6.1583S

Waalen J and Buxbaum JN. Is older colder or colder older? The association of age with body temperature in 18,630 individuals. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 2011; 66(5): 487-92. https://doi.org/10.1093/gerona/glr001

Zhao Z, Cao J, Niu C, Bao M, Xu J, Huo D, Liao S, Liu W, Speakman JR. Body temperature is a more important modulator of lifespan than metabolic rate in two small mammals. Nature Metabolism 2022; 4(3): 320-6. https://doi.org/10.1038/s42255-022-00545-5

Keil G, Cummings E, de Magalhães JP. Being cool: how body temperature influences ageing and longevity. Biogerontology 2015; 16: 383-97. https://doi.org/10.1007/s10522-015-9571-2

Shapiro I, Stein J, MacRae C, O’Reilly M. Pulse oximetry values from 33,080 participants in the Apple Heart & Movement Study. NPJ Digital Medicine 2023; 6(1): 134. https://doi.org/10.1038/s41746-023-00851-6

Wong AK, Charpignon M, Kim H, Josef C, De Hond AA, Fojas JJ, Tabaie A, Liu X, Mireles-Cabodevila E, Carvalho L, Kamaleswaran R. Analysis of discrepancies between pulse oximetry and arterial oxygen saturation measurements by race and ethnicity and association with organ dysfunction and mortality. JAMA Network Open 2021; 4(11): e2131674-. https://doi.org/10.1001/jamanetworkopen.2021.31674

Chan ED, Chan MM, Chan MM. Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations. Respiratory medicine 2013; 107(6): 789-99. https://doi.org/10.1016/j.rmed.2013.02.004

Lee H, Ko H, Lee J. Reflectance pulse oximetry: Practical issues and limitations. Ict Express 2016; 2(4): 195-8. https://doi.org/10.1016/j.icte.2016.10.004

Collins JA, Rudenski A, Gibson J, Howard L, O’Driscoll R. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve. Breathe 2015; 11(3): 194-201. https://doi.org/10.1183/20734735.001415

Lorenzo I, Serra-Prat M, Yébenes JC. The role of water homeostasis in muscle function and frailty: a review. Nutrients 2019; 11(8): 1857. https://doi.org/10.3390/nu11081857

Kerch G. Role of changes in state of bound water and tissue stiffness in development of age-related diseases. Polymers 2020; 12(6): 1362. https://doi.org/10.3390/polym12061362

Kerch G. Distribution of tightly and loosely bound water in biological macromolecules and age-related diseases. International journal of biological macromolecules 2018; 118: 1310-8. https://doi.org/10.1016/j.ijbiomac.2018.06.187

Jensen MT. Resting heart rate and relation to disease and longevity: past, present and future. Scandinavian journal of clinical and laboratory investigation 2019; 79(1-2): 108-16. https://doi.org/10.1080/00365513.2019.1566567

Jensen MT, Marott JL, Allin KH, Nordestgaard BG, Jensen GB. Resting heart rate is associated with cardiovascular and all-cause mortality after adjusting for inflammatory markers: the Copenhagen City Heart Study. European journal of preventive cardiology 2012; 19(1): 102-8. https://doi.org/10.1177/1741826710394274

Quer G, Gouda P, Galarnyk M, Topol EJ, Steinhubl SR. Inter-and intraindividual variability in daily resting heart rate and its associations with age, sex, sleep, BMI, and time of year: Retrospective, longitudinal cohort study of 92,457 adults. Plos one 2020; 15(2): e0227709. https://doi.org/10.1371/journal.pone.0227709

Stessman J, Jacobs JM, Stessman‐Lande I, Gilon D, Leibowitz D. Aging, resting pulse rate, and longevity. Journal of the American Geriatrics Society 2013; 61(1): 40-5. https://doi.org/10.1111/jgs.12060

Heymsfield SB, Smith B, Dahle J, Kennedy S, Fearnbach N, Thomas DM, Bosy‐Westphal A, Müller MJ. Resting energy expenditure: a mechanical historical perspective from cellular to whole‐body level. Obesity 2021; 29(3): 500-11. https://doi.org/10.1002/oby.23090

Heymsfield SB, Thomas DM, Bosy-Westphal A, Müller MJ. The anatomy of resting energy expenditure: body composition mechanisms. European journal of clinical nutrition 2019; 73(2): 166-71 https://doi.org/10.1038/s41430-018-0319-3

Blundell JE, Caudwell P, Gibbons C, Hopkins M, Naslund E, King N, Finlayson G. Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation. Disease models & mechanisms 2012; 5(5): 608-13. https://doi.org/10.1242/dmm.009837

Manini TM. Energy expenditure and aging. Aging research reviews 2010; 9(1): 1-1. https://doi.org/10.1016/j.arr.2009.08.002

Kitazoe Y, Kishino H, Tanisawa K, Udaka K, Tanaka M. Renormalized basal metabolic rate describes the human aging process and longevity. Aging Cell 2019; 18(4): e12968. https://doi.org/10.1111/acel.12968

Ng JC, Schooling CM. Effect of basal metabolic rate on lifespan: a sex-specific Mendelian randomization study. Scientific Reports 2023; 13(1): 7761. https://doi.org/10.1038/s41598-023-34410-6

Frisard MI, Broussard A, Davies SS, Roberts LJ, Rood J, Jonge LD, Fang X, Jazwinski SM, Deutsch WA, Ravussin E. Aging, resting metabolic rate, and oxidative damage: results from the Louisiana Healthy Aging Study. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 2007; 62(7): 752-9. https://doi.org/10.1093/gerona/62.7.752

Schrack JA, Knuth ND, Simonsick EM, Ferrucci L. “IDEAL” aging is associated with lower resting metabolic rate: the Baltimore Longitudinal Study of Aging. Journal of the American Geriatrics Society 2014; 62(4): 667-72. https://doi.org/10.1111/jgs.12740

Frisard MI, Broussard A, Davies SS, Roberts LJ, Rood J, Jonge LD, Fang X, Jazwinski SM, Deutsch WA, Ravussin E. Aging, resting metabolic rate, and oxidative damage: results from the Louisiana Healthy Aging Study. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 2007; 62(7): 752-9. https://doi.org/10.1093/gerona/62.7.752

Choquette S, Chuin A, Lalancette DA, Brochu M, Dionne IJ. Predicting energy expenditure in elders with the metabolic cost of activities. Med Sci Sports Exerc 2009; 41(10): 1915-20. https://doi.org/10.1249/MSS.0b013e3181a6164a

Roberts SB, Dallal GE. Energy requirements and aging. Public health nutrition 2005; 8(7a): 1028-36. https://doi.org/10.1079/PHN2005794

Williams SK, Jerlström Hultqvist J, Eglit Y, Salas-Leiva DE, Curtis B, Orr RJ, Stairs CW, Atalay TN, MacMillan N, Simpson AG, Roger AJ. Extreme mitochondrial reduction in a novel group of free-living metamonads. Nature Communications 2024; 15(1): 6805. https://doi.org/10.1038/s41467-024-50991-w

Messori C, Prinzera SV, di Bardone FB. The super-coherent state of biological water Open Access Library Journal 2019b; 6(02): 1. https://doi.org/10.4236/oalib.1105236

Del Giudice E, Tedeschi A, Vitiello G, Voeikov V. Coherent structures in liquid water close to hydrophilic surfaces Journal of Physics: Conference Series 2013; 442(1): 012028 IOP Publishing. https://doi.org/10.1088/1742-6596/442/1/012028

Giudice ED, Spinetti PR, Tedeschi A. Water dynamics at the root of metamorphosis in living organisms Water 2010; 2(3): 566-86. https://doi.org/10.3390/w2030566

Giudice ED, Tedeschi A. Water and autocatalysis in living matter Electromagnetic Biology and Medicine 2009; 28(1): 46-52. https://doi.org/10.1080/15368370802708728

Bono I, Del Giudice E, Gamberale L, Henry M. Emergence of the coherent structure of liquid water Water 2012; 4(3): 510-32. https://doi.org/10.3390/w4030510

Pollack GH Water, energy and life: fresh views from the water's edge International journal of design & nature and ecodynamics: a transdisciplinary journal relating to nature, science and the humanities 2010; 5(1): 27. https://doi.org/10.2495/DNE-V5-N1-27-29

Voeikov VL Biological oxidation: over a century of hardship for the concept of active oxygen Cell Mol Biol 2005; 51: 663-75.

Voeikov VL, Del Giudice E. Water respiration-the basis of the living state. Water 2009; 1(1): 52-75.

Voeikov VL Reactive oxygen species (ROS): pathogens or sources of vital energy Part 2 Bioenergetic and bioinformational functions of ROS Journal of Alternative & Complementary Medicine 2006; 12(3): 265-70. https://doi.org/10.1089/acm.2006.12.265

Voeikov VL Fundamental role of water in bioenergetics In Biophotonics and Coherent Systems in Biology 2007; (pp. 89-104). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-28417-0_7

Voeikov V. Reactive oxygen species, water, photons, and life. In Biology Forum/Rivista di Biologia 2010; (103).

Voeikov VL, Del Giudice E. On the relationship between exclusion zones and coherence domains in waterhttps://waterjournal.org/uploads/vol5/supplement/Voeikov%20and%20DelGiudice.pdf

Ho MW Illuminating water and life: Emilio Del Giudice Electromagnetic biology and medicine 2015; 34(2): 113-22. https://doi.org/10.3109/15368378.2015.1036079

Ho MW Living rainbow H2O World Scientific; 2012. https://doi.org/10.1142/9789814390903

Wikidoc link. https://www.wikidoc.org/index.php/Singlet_ oxygen

Chem.libre link. https://chem.libretexts.org/Bookshelves/ General_Chemistry/Book%3A_Structure_and_Reactivity_in_Organic_Biological_and_Inorganic_Chemistry_(Schaller)/V%3A__Reactivity_in_Organic_Biological_and_Inorganic_Chemistry_3/04%3A_Oxygen_Binding_and_Reduction/4.01%3A_Introduction

Semyachkina-Glushkovskaya OV, Sokolovski SG, Goltsov A, Gekaluyk AS, Saranceva EI, Bragina OA, Tuchin VV, Rafailov EU. Laser-induced generation of singlet oxygen and its role in cerebrovascular physiology. Progress in Quantum Electronics 2017; 55: 112-28. https://doi.org/10.1016/j.pquantelec.2017.05.001

Amaroli A, Pasquale C, Zekiy A, Utyuzh A, Benedicenti S, Signore A, Ravera S. Photobiomodulation and oxidative stress: 980 nm diode laser light regulates mitochondrial activity and reactive oxygen species production. Oxidative Medicine and Cellular Longevity 2021; 2021: 1-1. https://doi.org/10.1155/2021/6626286

Zhou X, Wang Y, Si J, Zhou R, Gan L, Di C, Xie Y, Zhang H. Laser controlled singlet oxygen generation in mitochondria to promote mitochondrial DNA replication in vitro. Scientific reports 2015; 5(1): 16925. https://doi.org/10.1038/srep16925

Maharjan PS, Bhattarai HK. Singlet oxygen, photodynamic therapy, and mechanisms of cancer cell death. Journal of Oncology 2022; 2022. https://doi.org/10.1155/2022/7211485

Chrétien D, Bénit P, Ha HH, Keipert S, El-Khoury R, Chang YT, Jastroch M, Jacobs HT, Rustin P, Rak M. Mitochondria are physiologically maintained at close to 50 C. PLoS biology 2018; 16(1): 2003992. https://doi.org/10.1371/journal.pbio.2003992

Terzioglu M, Veeroja K, Montonen T, Ihalainen TO, Salminen TS, Bénit P, Rustin P, Chang YT, Takeharu N, Jacobs HT. Mitochondrial temperature homeostasis resists external metabolic stresses. bioRxiv 2023; 2023-05.

Wikipedia Infrared spectrum. https://en.wikipedia.org/ wiki/Infrared

Gudkov SV, Astashev ME, Bruskov VI, Kozlov VA, Zakharov SD, Bunkin NF. Self-oscillating water chemiluminescence modes and reactive oxygen species generation induced by laser irradiation; effect of the exclusion zone created by Nafion. Entropy 2014; 16(11): 6166-85. https://doi.org/10.3390/e16116166

Kim Y, Bertagna F, D'souza EM, Heyes DJ, Johannissen LO, Nery ET, Pantelias A, Sanchez-Pedreño Jimenez A, Slocombe L, Spencer MG, Al-Khalili J. Quantum biology: An update and perspective Quantum Reports 2021; 3(1): 80-126. https://doi.org/10.3390/quantum3010006

Cui Q, Karplus M. Is a "proton wire" concerted or stepwise A model study of proton transfer in carbonic anhydrase The Journal of Physical Chemistry B 2003; 107(4): 1071-8. https://doi.org/10.1021/jp021931v

Salna B, Benabbas A, Sage JT, van Thor J, Champion PM. Wide-dynamic-range kinetic investigations of deep proton tunneling in proteins Nature Chemistry 2016; 8(9): 874-80. https://doi.org/10.1038/nchem.2527

Odella E, Secor M, Reyes Cruz EA, Guerra WD, Urrutia MN, Liddell PA, Moore TA, Moore GF, Hammes-Schiffer S, Moore AL. Managing the redox potential of PCET in grotthuss-type proton wires Journal of the American Chemical Society 2022; 144(34): 15672-9. https://doi.org/10.1021/jacs.2c05820

Babcock GT. How oxygen is activated and reduced in respiration. Proceedings of the National Academy of Sciences. 1999; 96(23): 12971-3. https://doi.org/10.1073/pnas.96.23.12971

Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. Journal of Inflammation Research 2020: 1057-73. https://doi.org/10.2147/JIR.S275595

https://www.toppr.com/ask/question/amount-of-energy-available-per-mole-of-oxygen-used-in/

Dewar A, Kass L, Stephens RC, Tetlow N, Desai T. Heart rate recovery assessed by cardiopulmonary exercise testing in patients with cardiovascular disease: relationship with prognosis. International Journal of Environmental Research and Public Health 2023; 20(6): 4678. https://doi.org/10.3390/ijerph20064678

Lipinski MJ, Vetrovec GW, Froelicher VF. Importance of the first two minutes of heart rate recovery after exercise treadmill testing in predicting mortality and coronary artery disease in men. The American journal of cardiology 2004; 93(4): 445-9. https://doi.org/10.1016/j.amjcard.2003.10.039

Cheng YJ, Lauer MS, Earnest CP, Church TS, Kampert JB, Gibbons LW, Blair SN. Heart rate recovery following maximal exercise testing as a predictor of cardiovascular disease and all-cause mortality in men with diabetes. Diabetes care 2003; 26(7): 2052-7. https://doi.org/10.2337/diacare.26.7.2052

Matsiyevska O. Influence of the redox potential of different water quality on the human blood. Технологический аудит и резервы производства 2017; 1(3 (33)). https://doi.org/10.15587/2312-8372.2017.93633

Pollack GH Cell electrical properties: reconsidering the origin of the electrical potential Cell Biol Int 2015; 39(3): 237-342. ISSN 1065-6995. https://doi.org/10.1002/cbin.10382

Pollack GH The fourth phase of water Ebner and Sons Publishers: Seattle, WA, USA 2013.

Hwang SG, Hong JK, Sharma A, Pollack GH, Bahng G. Exclusion zone and heterogeneous water structure at ambient temperature PLoS One 2018; 13(4). https://doi.org/10.1371/journal.pone.0195057

Conversion website https://www.quora.com/How-many-electrons-are-in-1-volt

Kotfis K, Ślozowska J, Safranow K, Szylińska A, Listewnik M. The practical use of white cell inflammatory biomarkers in predicting postoperative delirium after cardiac surgery. Brain sciences 2019; 9(11): 308. https://doi.org/10.3390/brainsci9110308

Fest J, Ruiter TR, Groot Koerkamp B, Rizopoulos D, Ikram MA, van Eijck CH, Stricker BH. The neutrophil-to-lymphocyte ratio is associated with mortality in the general population: The Rotterdam Study. European journal of epidemiology 2019; 34: 463-70. https://doi.org/10.1007/s10654-018-0472-y

Nehring SM, Goyal A, Patel BC. C reactive protein.

Kumarasamy C, Sabarimurugan S, Madurantakam RM, Lakhotiya K, Samiappan S, Baxi S, Nachimuthu R, Gothandam KM, Jayaraj R. Prognostic significance of blood inflammatory biomarkers NLR, PLR, and LMR in cancer—A protocol for systematic review and meta-analysis. Medicine 2019; 98(24): e14834. https://doi.org/10.1097/MD.0000000000014834

Misiewicz A, Dymicka-Piekarska V. Fashionable, but what is their actual clinical usefulness? NLR, LMR, and PLR as a promising indicator in colorectal cancer prognosis: a systematic review. Journal of inflammation research 2023: 69-81. https://doi.org/10.2147/JIR.S391932

Biswas S, Das R, Banerjee ER. Role of free radicals in human inflammatory diseases. Aims Biophysics 2017; 4(4): 596-614. https://doi.org/10.3934/biophy.2017.4.596

Maddu N. Diseases related to types of free radicals. London, UK: IntechOpen; 2019 Mar 6. https://doi.org/10.5772/intechopen.82879

Sthijns MM, van Blitterswijk CA, LaPointe VL. Redox regulation in regenerative medicine and tissue engineering: The paradox of oxygen. Journal of tissue engineering and regenerative medicine 2018; 12(10): 2013-20. https://doi.org/10.1002/term.2730

Wikipedia https://en.wikipedia.org/wiki/Singlet_oxygen

Edge R, Truscott TG. The reactive oxygen species singlet oxygen, hydroxy radicals, and the superoxide radical anion—examples of their roles in biology and medicine. Oxygen 2021; 1(2): 77-95. https://doi.org/10.3390/oxygen1020009

Dremin V, Semyachkina-Glushkovskaya O, Rafailov E. Direct laser-induced singlet oxygen in biological systems: application from in vitro to in vivo. IEEE Journal of Selected Topics in Quantum Electronics 2023 Feb 20. https://doi.org/10.1109/JSTQE.2023.3246587

Wu S, Zhang J, Wu P. Photo-modulated nanozymes for biosensing and biomedical applications. Analytical methods 2019; 11(40): 5081-8. https://doi.org/10.1039/C9AY01493D

Onyango AN. Endogenous generation of singlet oxygen and ozone in human and animal tissues: mechanisms, biological significance, and influence of dietary components. Oxidative Medicine and Cellular Longevity 2016. https://doi.org/10.1155/2016/2398573

Tatsuzawa H, Maruyama T, Hori K, Sano Y, Nakano M. Singlet oxygen (1ΔgO2) as the principal oxidant in myeloperoxidase-mediated bacterial killing in neutrophil phagosome. Biochemical and biophysical research communications. 1999; 262(3): 647-50. https://doi.org/10.1006/bbrc.1999.1265

Sthijns MM, van Blitterswijk CA, LaPointe VL. Redox regulation in regenerative medicine and tissue engineering: The paradox of oxygen. Journal of tissue engineering and regenerative medicine 2018; 12(10): 2013-20. https://doi.org/10.1002/term.2730

Allen R. Solving a quantum mystery: The oxygen requirement for neutrophil bacteria killing, Research Feature. 151. https://doi.org/10.26904/RF-151-6036339265

Hwang SG, Lee HS, Lee BC, Bahng G. Effect of antioxidant water on the bioactivities of cells. International journal of cell biology 2017; 2017. https://doi.org/10.1155/2017/1917239

Dremin V, Semyachkina-Glushkovskaya O, Rafailov E. Direct laser-induced singlet oxygen in biological systems: application from in vitro to in vivo. IEEE Journal of Selected Topics in Quantum Electronics 2023. https://doi.org/10.1109/JSTQE.2023.3246587

Wu S, Zhang J, Wu P. Photo-modulated nanozymes for biosensing and biomedical applications. Analytical methods 2019; 11(40): 5081-8. https://doi.org/10.1039/C9AY01493D

Onyango AN. Endogenous generation of singlet oxygen and ozone in human and animal tissues: mechanisms, biological significance, and influence of dietary components. Oxidative Medicine and Cellular Longevity 2016; 2016. https://doi.org/10.1155/2016/2398573

Tatsuzawa H, Maruyama T, Hori K, Sano Y, Nakano M. Singlet oxygen (1ΔgO2) as the principal oxidant in myeloperoxidase-mediated bacterial killing in neutrophil phagosome. Biochemical and biophysical research communications 1999; 262(3): 647-50. https://doi.org/10.1006/bbrc.1999.1265

Fujii J, Soma Y, Matsuda Y. Biological action of singlet molecular oxygen from the standpoint of cell signaling, injury and death. Molecules 2023; 28(10): 4085. https://doi.org/10.3390/molecules28104085

Messori, C., S. V. Prinzera, and F. B. di Bardone 2019b The super-coherent state of biological water Open Access Library Journal 6(02): 1. https://doi.org/10.4236/oalib.1105236

Sbitnev VI. Quantum consciousness in warm, wet and noisy brain. Modern Physics Letters B 2016; 30(28): 1650329. https://doi.org/10.1142/S0217984916503292

Ji Sayer. The New Biophysics: A Deep Dive into the Quantum Rabbit Hole of Esoteric Physiology.

Kerver ED, Vogels IM, Bosch KS, Vreeling-Sindelarova H, Van Den Munckhof RJ, Frederiks WM. In situ detection of spontaneous superoxide anion and singlet oxygen production by mitochondria in rat liver and small intestine. The Histochemical Journal 1997; 29: 229-37. https://doi.org/10.1023/A:1026453926517

Tuszynski JA From quantum chemistry to quantum biology: A path toward consciousness Journal of Integrative Neuroscience 2020; 19(4): 687-700. https://doi.org/10.31083/j.jin.2020.04.393

Li T, Tang H, Zhu J, Zhang JH The finer scale of consciousness: quantum theory Annals of Translational Medicine 2019; 7(20). https://doi.org/10.21037/atm.2019.09.09

Fields C, Friston K, Glazebrook JF, Levin M. A free energy principle for generic quantum systems Progress in Biophysics and Molecular Biology 2022; 173: 36-59. https://doi.org/10.1016/j.pbiomolbio.2022.05.006

Marais A, Adams B, Ringsmuth AK, Ferretti M, Gruber JM, Hendrikx R, Schuld M, Smith SL, Sinayskiy I, Krüger TP, Petruccione F. The future of quantum biology Journal of the Royal Society Interface 2018; 15(148): 20180640. https://doi.org/10.1098/rsif.2018.0640

Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson Jr RF, Kerr JA, Rossi MJ, Troe J. Summary of evaluated kinetic and photochemical data for atmospheric chemistry IUPAC Subcommittee on gas kinetic data evaluation for atmospheric chemistry 2001; 20. https://doi.org/10.1002/chin.198920332

Kim Y, Bertagna F, D'souza EM, Heyes DJ, Johannissen LO, Nery ET, Pantelias A, Sanchez-Pedreño Jimenez A, Slocombe L, Spencer MG, Al-Khalili J. Quantum biology: An update and perspective Quantum Reports 2021; 3(1): 80-126. https://doi.org/10.3390/quantum3010006

Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signaling 2012; 24(5): 981-90. https://doi.org/10.1016/j.cellsig.2012.01.008

Lennicke C, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Molecular Cell 2021; 81(18): 3691-707. https://doi.org/10.1016/j.molcel.2021.08.018

Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circulation research 2018; 122(6): 877-902. https://doi.org/10.1161/CIRCRESAHA.117.311401

Fatima K, Masood N, Luqman S. Quenching of singlet oxygen by natural and synthetic antioxidants and assessment of electronic UV/Visible absorption spectra for alleviating or enhancing the efficacy of photodynamic therapy. Biomedical Research and Therapy 2016; 3: 1-4. https://doi.org/10.7603/s40730-016-0008-6

Blázquez-Castro A, Breitenbach T, Ogilby PR. Cell cycle modulation through subcellular spatially resolved production of singlet oxygen via direct 765 nm irradiation: manipulating the onset of mitosis. Photochemical & Photobiological Sciences 2018; 17: 1310-8. https://doi.org/10.1039/c8pp00338f

Bugazia N. Removing zombie (senescent) cells using senolytics slows the aging process.

Scudellari M. To stay young, kill zombies. Nature 2017; 550(7677): 448-50. https://doi.org/10.1038/550448a

Huang J, Lam GY, Brumell JH. Autophagy signaling through reactive oxygen species. Antioxidants & redox signaling 2011; 14(11): 2215-31. https://doi.org/10.1089/ars.2010.3554

Wible DJ, Bratton SB. Reciprocity in ROS and autophagic signaling. Current opinion in toxicology 2018; 7: 28-36. https://doi.org/10.1016/j.cotox.2017.10.006

Ali MA, Konishi T. Enhancement of hydroxyl radical generation in the fenton reaction by alpha‐hydroxy acid. IUBMB Life. 1998; 46(1): 137-45. https://doi.org/10.1080/15216549800203642

Sadrzadeh SM, Graf E, Panter SS, Hallaway PE, Eaton JW. Hemoglobin. A biologic fenton reagent. Journal of Biological Chemistry. 1984; 259(23): 14354-6. https://doi.org/10.1016/S0021-9258(17)42604-4

Kaushal GP, Chandrashekar K, Juncos LA. Molecular interactions between reactive oxygen species and autophagy in kidney disease. International journal of molecular sciences 2019; 20(15): 3791. https://doi.org/10.3390/ijms20153791

Yun HR, Jo YH, Kim J, Shin Y, Kim SS, Choi TG. Roles of autophagy in oxidative stress. International journal of molecular sciences 2020; 21(9): 3289. https://doi.org/10.3390/ijms21093289

Irazabal MV, Torres VE. Reactive oxygen species and redox signaling in chronic kidney disease. Cells 2020; 9(6): 1342. https://doi.org/10.3390/cells9061342

Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, Del Razo LM, Quintanilla-Vega B, Pappa A, Panayiotidis MI, Franco R. Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxidants & redox signaling 2014; 21(1): 66-85. https://doi.org/10.1089/ars.2014.5837

Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. American Journal of Physiology-Lung Cellular and Molecular Physiology 2000; 279(6): L1005-28. https://doi.org/10.1152/ajplung.2000.279.6.L1005

Averill-Bates D. Reactive oxygen species and cell signaling. Review. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2023: 119573. https://doi.org/10.1016/j.bbamcr.2023.119573

Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, Del Razo LM, Quintanilla-Vega B, Pappa A, Panayiotidis MI, Franco R. Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxidants & redox signaling 2014; 21(1): 66-85. https://doi.org/10.1089/ars.2014.5837

Sun Y, Lu Y, Saredy J, Wang X, Drummer IV C, Shao Y, Saaoud F, Xu K, Liu M, Yang WY, Jiang X. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox biology 2020; 37: 101696. https://doi.org/10.1016/j.redox.2020.101696

Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circulation research 2018; 122(6): 877-902. https://doi.org/10.1161/CIRCRESAHA.117.311401

Serra-Prat et al. (2019). Intracellular water content in lean mass is associated with muscle strength, functional capacity, and frailty in community-dwelling elderly individuals—a cross-sectional study. https://doi.org/10.3390/nu11030661

Lichtenbelt et al. (1999). Increased extracellular water compartment, relative to intracellular compartment, after weight reduction. https://doi.org/10.1152/jappl.1999.87.1.294

Zhang et al. (2019). Association between intracellular and extracellular fluid content and the amount of water intake among Chinese college students. https://doi.org/10.1186/s12986-019-0397-9

Shi L, Hu F, Min W. Optical mapping of biological water in single live cells by stimulated Raman excited fluorescence microscopy. Nature communications 2019; 10(1): 4764. https://doi.org/10.1038/s41467-019-12708-2

Voeikov VL Biological oxidation: over a century of hardship for the concept of active oxygen Cell Mol Biol 2005; 51: 663-75.

Voeikov VL Reactive oxygen species—(ROS) pathogens or sources of vital energy Part 1 ROS in normal and pathologic physiology of living systems Journal of Alternative & Complementary Medicine 2006; 12(2): 111-8. https://doi.org/10.1089/acm.2006.12.111

Voeikov VL Reactive oxygen species (ROS): pathogens or sources of vital energy Part 2 Bioenergetic and bioinformational functions of ROS Journal of Alternative & Complementary Medicine 2006; 12(3): 265-70. https://doi.org/10.1089/acm.2006.12.265

Voeikov VL Fundamental role of water in bioenergetics In Biophotonics and Coherent Systems in Biology 2007; (pp. 89-104). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-28417-0_7

Voeikov V. Reactive oxygen species, water, photons, and life. In Biology Forum/Rivista di Biologia 2010; (103). Voeikov VL, Del Giudice E. On the relationship between exclusion zones and coherence domains in water https://waterjournal.org/uploads/vol5/supplement/Voeikov%20and%20DelGiudice.pdf

Voeikov VL, Del Giudice E. Water respiration-the basis of the living state. Water 2009; 1(1): 52-75.

Messori C, Prinzera SV, di Bardone FB. Deep into the water: exploring the hydro-electromagnetic and quantum-electrodynamic properties of interfacial water in living systems. Open Access Library Journal 2019; 6(05): 1. https://doi.org/10.4236/oalib.1105435

Del Giudice E, Voeikov V, Tedeschi A, Vitiello G. The origin and the special role of coherent water in living systems. Fields of the Cell 2015: 95-111.

Del Giudice E, Giuliani L. Coherence in water and the kT problem in living matter. Non-thermal effects and mechanisms of interaction between electromagnetic fields and living matter 2010: 7.

Del Giudice E, Tedeschi A, Vitiello G, Voeikov V. Coherent structures in liquid water close to hydrophilic surfaces. InJournal of Physics: Conference Series 2013; 442(1): 12028. IOP Publishing. https://doi.org/10.1088/1742-6596/442/1/012028

Ling GN. A convergence of experimental and theoretical breakthroughs affirms the PM theory of dynamically structured cell water on the theory’s 40th birthday. Water and the Cell 2006: 1-52. https://doi.org/10.1007/1-4020-4927-7_1

Ho MW, Yu-Ming Z, Haffegee J, Watton A, Musumeci F, Privitera G, Scordino A, Triglia A. The liquid crystalline organism and biological water. Water and the Cell 2006: 219-34. https://doi.org/10.1007/1-4020-4927-7_10

Chand S, Pal SC, Lim DW, Otsubo K, Pal A, Kitagawa H, Das MC. A 2D Mg (II)-MOF with high density of coordinated waters as sole intrinsic proton sources for ultrahigh superprotonic conduction. ACS Materials Letters 2020; 2(10): 1343-50. https://doi.org/10.1021/acsmaterialslett.0c00358

Otake KI, Otsubo K, Komatsu T, Dekura S, Taylor JM, Ikeda R, Sugimoto K, Fujiwara A, Chou CP, Sakti AW, Nishimura Y. Confined water-mediated high proton conduction in hydrophobic channel of a synthetic nanotube. Nature communications 2020; 11(1): 843. https://doi.org/10.1038/s41467-020-14627-z

Ho MW. Water is the means, medium and message of life. International Journal of Design & Nature and Ecodynamics 2014; 9(1): 1-2. https://doi.org/10.2495/DNE-V9-N1-1-12

Verdel N, Jerman I, Bukovec P. The “Autothixotropic” phenomenon of water and its role in proton transfer. International Journal of Molecular Sciences 2011; 12(11): 7481-94. https://doi.org/10.3390/ijms12117481

Sorrentino I, Galli M, Medraño-Fernandez I, Sitia R. Transfer of H2O2 from Mitochondria to the endoplasmic reticulum via Aquaporin-11. Redox Biology 2022; 55: 102410. https://doi.org/10.1016/j.redox.2022.102410

Zhuang Y, Jiang W, Zhao Z, Li W, Deng Z, Liu J. Ion channel-mediated mitochondrial volume regulation and its relationship with mitochondrial dynamics. Channels 2024; 18(1): 2335467. https://doi.org/10.1080/19336950.2024.2335467

Nozaki K, Ishii D, Ishibashi K. Intracellular aquaporins: clues for intracellular water transport?. Pflügers Archiv-European Journal of Physiology 2008; 456: 701-7. https://doi.org/10.1007/s00424-007-0373-5

Ikaga R, Namekata I, Kotiadis VN, Ogawa H, Duchen MR, Tanaka H, Iida-Tanaka N. Knockdown of aquaporin-8 induces mitochondrial dysfunction in 3T3-L1 cells. Biochemistry and biophysics reports 2015; 4: 187-95. https://doi.org/10.1016/j.bbrep.2015.09.009

Marchissio MJ, Francés DE, Carnovale CE, Marinelli RA. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability. Toxicology and applied pharmacology 2012; 264(2): 246-54. https://doi.org/10.1016/j.taap.2012.08.005

Abir-Awan M, Kitchen P, Salman MM, Conner MT, Conner AC, Bill RM. Inhibitors of mammalian aquaporin water channels. International journal of molecular sciences 2019; 20(7): 1589. https://doi.org/10.3390/ijms20071589

Chow PH, Bowen J, Yool AJ. Combined systematic review and transcriptomic analyses of mammalian aquaporin classes 1 to 10 as biomarkers and prognostic indicators in diverse cancers. Cancers 2020; 12(7): 1911. https://doi.org/10.3390/cancers12071911

Direito I, Madeira A, Brito MA, Soveral G. Aquaporin-5: from structure to function and dysfunction in cancer. Cellular and Molecular Life Sciences 2016; 73: 1623-40. https://doi.org/10.1007/s00018-016-2142-0

Marlar S, Jensen HH, Login FH, Nejsum LN. Aquaporin-3 in cancer. International journal of molecular sciences 2017; 18(10): 2106. https://doi.org/10.3390/ijms18102106

Dajani S, Saripalli A, Sharma-Walia N. Water transport proteins-aquaporins (AQPs) in cancer biology. Oncotarget 2018; 9(91): 36392. https://doi.org/10.18632/oncotarget.26351

Lorenzo I, Serra-Prat M, Yébenes JC. The role of water homeostasis in muscle function and frailty: a review. Nutrients 2019; 11(8): 1857. https://doi.org/10.3390/nu11081857

Kerch G. Role of changes in state of bound water and tissue stiffness in development of age-related diseases. Polymers 2020; 12(6): 1362. https://doi.org/10.3390/polym12061362

Kerch G. Distribution of tightly and loosely bound water in biological macromolecules and age-related diseases. International journal of biological macromolecules 2018; 118: 1310-8. https://doi.org/10.1016/j.ijbiomac.2018.06.187

Yang M, Brackenbury WJ. Membrane potential and cancer progression. Frontiers in physiology 2013; 4: 185. https://doi.org/10.3389/fphys.2013.00185

Yang M, Brackenbury WJ. Harnessing the membrane potential to combat cancer progression. Bioelectricity 2022; 4(2): 75-80. https://doi.org/10.1089/bioe.2022.0001

Mojica KT, Massari JR, Rodriguez JR, Olalde J, Berdiel M, Gonzalez MJ. Structured Water and Cancer: Orthomolecular Hydration Therapy. Journal of Cancer Research Updates 2023; 12: 5-9. https://doi.org/10.30683/1929-2279.2023.12.2

Lei M, Zhang T, Lu X, Zhao X, Wang H, Long J, Lu Z. Membrane-mediated modulation of mitochondrial physiology by terahertz waves. Biomedical Optics Express 2024; 15(7): 4065-80. https://doi.org/10.1364/BOE.528706

Smolyanskaya OA, Chernomyrdin NV, Konovko AA, Zaytsev KI, Ozheredov IA, Cherkasova OP, Nazarov MM, Guillet JP, Kozlov SA, Kistenev YV, Coutaz JL. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Progress in Quantum Electronics 2018; 62: 1-77. https://doi.org/10.1016/j.pquantelec.2018.10.001

Sun L, Zhao L, Peng RY. Research progress in the effects of terahertz waves on biomacromolecules. Military Medical Research 2021; 8: 1-8. https://doi.org/10.1186/s40779-021-00321-8

Vatansever F, Hamblin MR. Far infrared radiation (FIR): Its biological effects and medical applications: Ferne Infrarotstrahlung: Biologische Effekte und medizinische Anwendungen. Photonics & lasers in medicine 2012; 1(4): 255-66. https://doi.org/10.1515/plm-2012-0034

Economos CD, Hatfield DP, King AC, Ayala GX, Pentz MA. Food and physical activity environments: an energy balance approach for research and practice. American journal of preventive medicine 2015; 48(5): 620-9. https://doi.org/10.1016/j.amepre.2014.12.007

Romieu I, Dossus L, Barquera S, Blottière HM, Franks PW, Gunter M, Hwalla N, Hursting SD, Leitzmann M, Margetts B, Nishida C. Energy balance and obesity: what are the main drivers?. Cancer Causes & Control 2017; 28: 247-58. https://doi.org/10.1007/s10552-017-0869-z

Ramsey CL. Application of a structured water generator for crop irrigation: structured water, drought tolerance, and alteration of plant defense mechanisms to abiotic stressors. Journal of Basic & Applied Sciences 2021; 17: 127-52. https://doi.org/10.29169/1927-5129.2021.17.14

Ramsey CL. Magnetized Seeds and Structured Water: Effects on Resilience of Velvet Bean Seedlings (Mucuna pruriens) under Deficit Irrigation. Journal of Basic & Applied Sciences 2023; 19: 249-70. https://doi.org/10.29169/1927-5129.2023.19.19

Rockwell FE, Holbrook NM, Stroock AD. The competition between liquid and vapor transport in transpiring leaves. Plant Physiology 2014; 164(4): 1741-58. https://doi.org/10.1104/pp.114.236323

Rockwell FE, Holbrook NM, Jain P, Huber AE, Sen S, Stroock AD. Extreme undersaturation in the intercellular airspace of leaves: a failure of Gaastra or Ohm? Annals of Botany 2022; 130(3): 301-16. https://doi.org/10.1093/aob/mcac094

Buckley TN, John GP, Scoffoni C, Sack L. How does leaf anatomy influence water transport outside the xylem?. Plant Physiology 2015; 168(4): 1616-35. https://doi.org/10.1104/pp.15.00731

Buckley TN, Sack L. The humidity inside leaves and why you should care: implications of unsaturation of leaf intercellular airspaces. American Journal of Botany 2019; 106(5): 618. https://doi.org/10.1002/ajb2.1282

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.