On New Simultaneous Generalizations of Well-Known Fixed Point Theorems
PDF

Keywords

MT-function (R-function)
Nadler’s fixed point theorem
Banach contraction principle
Simultaneous generalization
Kannan’s fixed point theorem
Chatterjea’s fixed point theorem
Berinde-Berinde’s fixed point theorem
Mizoguchi-Takahashi’s fixed point theorem

How to Cite

Du, W.-S. (2025). On New Simultaneous Generalizations of Well-Known Fixed Point Theorems. Journal of Basic & Applied Sciences, 21, 42–46. https://doi.org/10.29169/1927-5129.2025.21.05

Abstract

The primary goal of this work is to establish some new fixed point theorems and new simultaneous generalizations of Berinde-Berinde’s fixed point theorem, Mizoguchi-Takahashi’s fixed point theorem, Nadler’s fixed point theorem, Banach contraction principle, Kannan’s fixed point theorem and Chatterjea’s fixed point theorem.

https://doi.org/10.29169/1927-5129.2025.21.05
PDF

References

Banach S. Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fund Math 1922; 3: 133-181.

Berinde M, Berinde V. On a general class of multi-valued weakly Picard mappings. J Math Anal Appl 2007; 326: 772-782.

Chatterjea SK. Fixed-point theorems. C.R. Acad. Bulgare Sci 1972; 25: 727-730.

Du W-S. Some new results and generalizations in metric fixed point theory. Nonlinear Anal 2010; 73: 1439-1446.

Du W-S. On coincidence point and fixed point theorems for nonlinear multivalued maps. Topology and its Applications 2012; 159: 49-56.

Du W-S. New existence results of best proximity points and fixed points for MT(λ) -functions with applications to differential equations. Linear and Nonlinear Analysis 2016; 2(2): 199-213.

Du W-S. Simultaneous generalizations of fixed point theorems of Mizoguchi-Takahashi type, Nadler type Banach type, Kannan type and Chatterjea type. Nonlinear Analysis and Differential Equations 2017; 5(4): 171-180.

Kannan R. Some results on fixed point- II. Amer Math Monthly 1969; 76: 405-408.

Mizoguchi N, Takahashi W. Fixed point theorems for multivalued mappings on complete metric spaces. J Math Anal Appl 1989; 141: 177-188.

Nadler SB. Jr. Multi-valued contraction mappings. Pacific J Math 1969; 30: 475-488.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.